[Un principe de Hasse pour les groupes de Mordell–Weil]
Dans cette Note, on démontre un principe de Hasse concernant la dépendance linéaire sur
In this Note we establish a Hasse principle concerning the linear dependence over
Accepté le :
Publié le :
Grzegorz Banaszak 1
@article{CRMATH_2009__347_13-14_709_0, author = {Grzegorz Banaszak}, title = {On a {Hasse} principle for {Mordell{\textendash}Weil} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {709--714}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.03.014}, language = {en}, }
Grzegorz Banaszak. On a Hasse principle for Mordell–Weil groups. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 709-714. doi : 10.1016/j.crma.2009.03.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.03.014/
[1] Support problem for the intermediate Jacobians of l-adic representations, J. Number Theory, Volume 100 (2003) no. 1, pp. 133-168
[2] Detecting linear dependence by reduction maps, J. Number Theory, Volume 115 (2005) no. 2, pp. 322-342
[3] On reduction map for étale K-theory of curves, Homology Homotopy Appl., Volume 7 (2005) no. 3, pp. 1-10
[4] On reduction maps and support problem in K-theory and abelian varieties, J. Number Theory, Volume 119 (2006), pp. 1-17
[5] Sur l'algébricité des représentations l-adiques, C. R. Acad. Sci. Paris Sér. A-B, Volume 290 (1980), p. A701-A703
[6] Support problem and its elliptic analogue, J. Number Theory, Volume 64 (1997), pp. 276-290
[7] Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983), pp. 349-366
[8] W. Gajda, K. Górnisiewicz, Linear dependence in Mordell–Weil groups, J. Reine Angew. Math., in press
[9] Diophantine Geometry an Introduction, Graduate Texts in Math., vol. 201, Springer, 2000
[10] Galois properties of torsion points on abelian varieties, Invent. Math., Volume 62 (1981), pp. 481-502
[11] Compatible systems of mod p Galois representations and Hecke characters, Math. Res. Lett., Volume 10 (2003), pp. 71-83
[12] M. Larsen, R. Schoof, Whitehead's lemmas and Galois cohomology of abelian varieties, preprint
[13] A. Perucca, The l-adic support problem for abelian varieties, preprint, 2007
[14] On the order of the reduction of a point on an abelian variety, Math. Ann., Volume 330 (2004), pp. 275-291
[15] Kummer theory on extensions of abelian varieties by tori, Duke Math. J., Volume 46 (1979) no. 4, pp. 745-761
[16] On power residues and exponential congruences, Acta Arith., Volume 27 (1975), pp. 397-420
[17] Good reduction of abelian varieties, Ann. of Math., Volume 68 (1968), pp. 492-517
[18] Variétés Abélienne et Courbes Algébriques, Hermann, Paris, 1948
[19] Kummer theory of abelian varieties and reductions of Mordell–Weil groups, Acta Arith., Volume 110 (2003), pp. 77-88
[20] A finiteness theorem for unpolarized abelian varieties over number fields with prescribed places of bad reduction, Invent. Math., Volume 79 (1985), pp. 309-321
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier