Let p be a sufficiently large prime and a nondegenerate system of linear forms in n variables over . We establish a nontrivial estimate on the incomplete character sum
Soit p un nombre premier suffisamment grand et un système non-dégénéré de formes linéaires sur en n variables. Nous obtenons une estimée non-triviale de la somme incomplète
Accepted:
Published online:
Jean Bourgain 1; Mei-Chu Chang 2
@article{CRMATH_2010__348_3-4_115_0, author = {Jean Bourgain and Mei-Chu Chang}, title = {On a multilinear character sum of {Burgess}}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--120}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2009.12.013}, language = {en}, }
Jean Bourgain; Mei-Chu Chang. On a multilinear character sum of Burgess. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 115-120. doi : 10.1016/j.crma.2009.12.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.013/
[1] The distribution of quadratic residues and non-residues, Mathematica, Volume 4 (1957), pp. 106-112
[2] A note on character sums for binary quadratic forms, J. London Math. Soc., Volume 43 (1968), pp. 271-274
[3] On a question of Davenport and Lewis and new character sum bounds in finite fields, Duke Math. J., Volume 145 (2008) no. 3, pp. 409-442
[4] M.-C. Chang, Character sums in , GAFA, in press
[5] S.V. Konyagin, Estimates of character sums in finite fields, Matematicheskie Zametki (in Russian), in press
[6] C. Lekkerkerker, Geometry of Numbers, North-Holland Mathematical Library, vol. 37, 1987
Cited by Sources:
Comments - Policy