[Degree of an algebraic solution of a d-web in the complex projective plane]
Let γ be an algebraic solution of a non-dicritical d-web in the complex projective plane. We give a formula relating global data (degree of the solution and of the web) to local data (some indices supported on the union of the singular set of γ with the intersection of the curve with the discriminant of the web).
Soit γ une solution algébrique de degré δ d'un d-tissu non-dicritique sur le plan projectif. On donne une formule qui relie d et δ à des indices dont le support est la réunion du lieu singuler de γ et de l'intersection de la courbe avec le discriminant du tissu.
Accepted:
Published online:
El Hadji Cheikh Mbacké Diop 1
@article{CRMATH_2010__348_3-4_171_0, author = {El Hadji Cheikh Mback\'e Diop}, title = {Degr\'e d'une solution alg\'ebrique d'un tissu sur le plan projectif complexe}, journal = {Comptes Rendus. Math\'ematique}, pages = {171--174}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2010.01.004}, language = {fr}, }
El Hadji Cheikh Mbacké Diop. Degré d'une solution algébrique d'un tissu sur le plan projectif complexe. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 171-174. doi : 10.1016/j.crma.2010.01.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.004/
[1] K-Theory, Notes by D.W. Anderson, Harvard University, 1964
[2] Some remarks on indices of holomorphic vector fields, Publ. Mat., Volume 41 (1997) no. 2, pp. 527-544
[3] The Poincaré problem in the nondicritical case, Ann. of Math. (2), Volume 140 (1994), pp. 289-294
[4] On the Poincaré inequality for one dimensional foliations, Compositio Math., Volume 142 (2006) no. 2, pp. 529-540
[5] Introduction à l'étude globale des tissus sur une surface holomorphe, Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 4, pp. 1095-1133
[6] Chern class of analytical sets and applications, K-Theory, Volume 34 (2005) no. 1, pp. 35-69
[7] Holomorphic foliations in having an invariant algebraic curve, Ann. Inst. Fourier (Grenoble), Volume 41 (1991) no. 4, pp. 883-903
[8] Bounds on leaves of one-dimensional foliations, Bull. Braz. Math. Soc. (N.S.), Volume 34 (2003) no. 1, pp. 145-169
[9] Principles of Algebraic Geometry, Wiley–Interscience, 1994 (Chapter 2, p. 264)
[10] On the geometry of Poincaré's problem for one-dimensional projective foliations, An. Acad. Brasil. Ciênc., Volume 73 (2001) no. 4, pp. 475-482
[11] Number of singularities of a generic web on the complex projective plane, J. Dynam. Control Systems, Volume 11 (2005) no. 2, pp. 218-296
Cited by Sources:
Comments - Policy