Comptes Rendus
Géométrie algébrique
Fibre de Milnor motivique à l'infini
Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 419-422.

Pour une application régulière f:UA1 à source lisse, nous définissons une fibre de Milnor motivique à l'infini et nous la calculons dans le cas d'un polynôme de Laurent non dégénéré pour son polyèdre de Newton à l'infini.

Given a regular map f:UA1 on a smooth variety U we define a motivic Milnor fiber at infinity and we compute it in the case of a non-degenerate Laurent polynomial for its Newton polyhedra at infinity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.01.008

Michel Raibaut 1

1 Laboratoire J.A. Dieudonné, UMR CNRS 6621, université de Nice-Sophia Antipolis, parc Valrose, 06108 Nice cedex 2, France
@article{CRMATH_2010__348_7-8_419_0,
     author = {Michel Raibaut},
     title = {Fibre de {Milnor} motivique \`a l'infini},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {419--422},
     publisher = {Elsevier},
     volume = {348},
     number = {7-8},
     year = {2010},
     doi = {10.1016/j.crma.2010.01.008},
     language = {fr},
}
TY  - JOUR
AU  - Michel Raibaut
TI  - Fibre de Milnor motivique à l'infini
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 419
EP  - 422
VL  - 348
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2010.01.008
LA  - fr
ID  - CRMATH_2010__348_7-8_419_0
ER  - 
%0 Journal Article
%A Michel Raibaut
%T Fibre de Milnor motivique à l'infini
%J Comptes Rendus. Mathématique
%D 2010
%P 419-422
%V 348
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2010.01.008
%G fr
%F CRMATH_2010__348_7-8_419_0
Michel Raibaut. Fibre de Milnor motivique à l'infini. Comptes Rendus. Mathématique, Volume 348 (2010) no. 7-8, pp. 419-422. doi : 10.1016/j.crma.2010.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.008/

[1] J. Denef; F. Loeser Geometry on arc spaces of algebraic varieties, Barcelona, 2000 (Progr. Math.), Volume vol. 201, Birkhäuser (2001), pp. 327-348

[2] J. Denef; F. Loeser Motivic Igusa zeta functions, J. Algebraic Geom., Volume 7 (1998), pp. 505-537

[3] R. García López; A. Némethi Hodge numbers attached to a polynomial map, Ann. Inst. Fourier (Grenoble), Volume 49 (1999), pp. 1547-1579

[4] G. Guibert Espaces d'arcs et invariants d'Alexander, Comment. Math. Helv., Volume 77 (2002), pp. 783-820

[5] G. Guibert; F. Loeser; M. Merle Nearby cycles and composition with a nondegenerate polynomial, Internat. Math. Res. Notices, Volume 31 (2005), pp. 1873-1888

[6] G. Guibert; F. Loeser; M. Merle Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, Duke Math. J., Volume 132 (2006), pp. 409-457

[7] A.G. Kouchnirenko Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-31

[8] Y. Matsui; K. Takeuchi Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves | arXiv

[9] Y. Matsui; K. Takeuchi Monodromy at infinity of polynomial map and mixed Hodge modules | arXiv

[10] A. Némethi; C. Sabbah Semicontinuity of the spectrum at infinity, Abh. Math. Sem. Univ. Hamburg, Volume 69 (1999), pp. 25-35

[11] C.A. Peters; J.H.M. Steenbrink Mixed Hodge Structures, Springer-Verlag, 2008

[12] F. Pham Vanishing homologies and the n variable saddlepoint method, Proc. Symp. Pure Math., vol. 40, 1983, pp. 319-333

[13] C. Sabbah Monodromy at infinity and Fourier transform, Publ. Res. Inst. Math. Sci., Volume 33 (1997), pp. 643-685

[14] M. Saito Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Volume 26 (1990), pp. 221-333

Cité par Sources :

Commentaires - Politique