We construct simply connected smooth manifolds M of dimension with the following properties: the second homotopy group is finite, M admits a smooth action by the circle and the -genus is non-zero.
Nous construisons des variétés M simplement connexes de dimension avec les propriétés suivantes : le deuxième groupe d'homotopie est fini, M admet une action lisse du cercle et le -genre est non nulle.
Accepted:
Published online:
Manuel Amann 1; Anand Dessai 2
@article{CRMATH_2010__348_5-6_283_0, author = {Manuel Amann and Anand Dessai}, title = {The $ \stackrel{{\textasciicircum}}{A}$-genus of $ {S}^{1}$-manifolds with finite second homotopy group}, journal = {Comptes Rendus. Math\'ematique}, pages = {283--285}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.01.011}, language = {en}, }
TY - JOUR AU - Manuel Amann AU - Anand Dessai TI - The $ \stackrel{ˆ}{A}$-genus of $ {S}^{1}$-manifolds with finite second homotopy group JO - Comptes Rendus. Mathématique PY - 2010 SP - 283 EP - 285 VL - 348 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2010.01.011 LA - en ID - CRMATH_2010__348_5-6_283_0 ER -
Manuel Amann; Anand Dessai. The $ \stackrel{ˆ}{A}$-genus of $ {S}^{1}$-manifolds with finite second homotopy group. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 283-285. doi : 10.1016/j.crma.2010.01.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.011/
[1] Spin-manifolds and group actions, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, 1970, pp. 18-28
[2] Characteristic classes and homogeneous spaces. II, Amer. J. Math., Volume 81 (1959), pp. 315-382
[3] On the rigidity theorems of Witten, J. Amer. Math. Soc., Volume 2 (1989), pp. 137-186
[4] Representations at fixed points of smooth actions of compact groups, Ann. of Math. (2), Volume 89 (1969), pp. 515-532
[5] Surgery on Simply Connected Manifolds, Springer, 1972
[6] -genus on non-spin manifolds with actions and the classification of positive quaternion-Kähler 12-manifolds, J. Differential Geom., Volume 61 (2002), pp. 341-364
[7] H. Herrera, R. Herrera, Erratum to [6], in press
[8] Elliptic genera, involutions and homogeneous spin manifolds, Geom. Dedicata, Volume 35 (1990), pp. 309-343
[9] Quaternion-Kähler geometry, Essays on Einstein Manifolds, Surveys in Differential Geometry, vol. VI, Int. Press, 1999, pp. 83-121
Cited by Sources:
Comments - Policy