[Critères de surjectivité pour des opérateurs de convolution dans
Le but de cet article est d'établir des critères de surjectivité pour des opérateurs de convolution, opérant de
The goal of this Note is to prove criteria for surjectivity of convolution operators acting from
Accepté le :
Publié le :
Alexander V. Abanin 1 ; Ryuichi Ishimura 2 ; Le Hai Khoi 3
@article{CRMATH_2010__348_5-6_253_0, author = {Alexander V. Abanin and Ryuichi Ishimura and Le Hai Khoi}, title = {Surjectivity criteria for convolution operators in $ {A}^{-\infty }$}, journal = {Comptes Rendus. Math\'ematique}, pages = {253--256}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.01.015}, language = {en}, }
TY - JOUR AU - Alexander V. Abanin AU - Ryuichi Ishimura AU - Le Hai Khoi TI - Surjectivity criteria for convolution operators in $ {A}^{-\infty }$ JO - Comptes Rendus. Mathématique PY - 2010 SP - 253 EP - 256 VL - 348 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2010.01.015 LA - en ID - CRMATH_2010__348_5-6_253_0 ER -
Alexander V. Abanin; Ryuichi Ishimura; Le Hai Khoi. Surjectivity criteria for convolution operators in $ {A}^{-\infty }$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 253-256. doi : 10.1016/j.crma.2010.01.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.015/
[1] On the duality between
[2] A.V. Abanin, Le Hai Khoi, Pre-dual of the function algebra
[3] A.V. Abanin, Le Hai Khoi, Dual of the function algebra
[4] The existence and the continuation of holomorphic solutions for convolution equations in tube domains, Bull. Soc. Math. France, Volume 122 (1994), pp. 413-433
[5] Sur la condition (S) de Kawai et la propriété de croissance régulière d'une fonction sous-harmonique et d'une fonction entière, Kyushu J. Math., Volume 48 (1994), pp. 257-263
[6] On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., Volume 17 (1970), pp. 467-517
[7] A criterion for the solvability of nonhomogeneous convolution equations in convex domains of
[8] Équations différentielles d'ordre infini, Bull. Soc. Math. France, Volume 95 (1967), pp. 109-154
[9] A division problem in the space of entire functions of exponential type, Ark. Mat., Volume 32 (1994), pp. 213-236
[10] Convolution equations in domains of
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier