Comptes Rendus
Mathematical Analysis/Probability Theory
Almost everywhere well-posedness of continuity equations with measure initial data
Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 249-252.

The aim of this Note is to present some new results concerning “almost everywhere” well-posedness and stability of continuity equations with measure initial data. The proofs of all such results can be found in Ambrosio et al. [4], together with some application to the semiclassical limit of the Schrödinger equation.

Dans cette Note, nous présentons des nouveaux résultats concernant l'existence, l'unicité (au sens « presque partout ») et la stabilité pour des équations de continuité avec données initiales mesures. Les preuves de tous ces résultats sont données dans Ambrosio et al. [4], avec aussi des applications à la limite semiclassique pour l'équation de Schrödinger.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.01.018

Luigi Ambrosio 1; Alessio Figalli 2

1 Scuoli Normale Superiore, piazza Cavalieri 7, 56126 Pisa, Italy
2 Department of Mathematics, The University of Texas at Austin, 1 University Station, C1200, Austin, TX 78712-1082, USA
@article{CRMATH_2010__348_5-6_249_0,
     author = {Luigi Ambrosio and Alessio Figalli},
     title = {Almost everywhere well-posedness of continuity equations with measure initial data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {249--252},
     publisher = {Elsevier},
     volume = {348},
     number = {5-6},
     year = {2010},
     doi = {10.1016/j.crma.2010.01.018},
     language = {en},
}
TY  - JOUR
AU  - Luigi Ambrosio
AU  - Alessio Figalli
TI  - Almost everywhere well-posedness of continuity equations with measure initial data
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 249
EP  - 252
VL  - 348
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2010.01.018
LA  - en
ID  - CRMATH_2010__348_5-6_249_0
ER  - 
%0 Journal Article
%A Luigi Ambrosio
%A Alessio Figalli
%T Almost everywhere well-posedness of continuity equations with measure initial data
%J Comptes Rendus. Mathématique
%D 2010
%P 249-252
%V 348
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2010.01.018
%G en
%F CRMATH_2010__348_5-6_249_0
Luigi Ambrosio; Alessio Figalli. Almost everywhere well-posedness of continuity equations with measure initial data. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 249-252. doi : 10.1016/j.crma.2010.01.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.018/

[1] L. Ambrosio Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004), pp. 227-260

[2] L. Ambrosio Transport equation and Cauchy problem for non-smooth vector fields, CIME Series, Cetraro, 2005 (B. Dacorogna; P. Marcellini, eds.) (Lecture Notes in Mathematics), Volume vol. 1927 (2008), pp. 2-41

[3] L. Ambrosio, G. Friesecke, J. Giannoulis, Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions, Comm. PDE, in press

[4] L. Ambrosio, A. Figalli, G. Friesecke, J. Giannoulis, Well posedness of transport equations with measure initial data and convergence of Wigner measures, work in preparation

[5] V. Bogachev Measure Theory, vols. I and II, Springer, 2007

[6] F. Bouchut Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 75-90

[7] F. Colombini; N. Lerner Uniqueness of continuous solutions for BV vector fields, Duke Math. J., Volume 111 (2002) no. 2, pp. 357-384

[8] R.J. DiPerna; P.L. Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547

[9] A. Figalli, T. Paul, work in preparation

[10] P. Gérard, Mesures semi-classiques et ondes de Bloch, in: Seminaire sur les Équations aux Dérivées Partielles, 1990–1991. Exp. No. XVI, 19 pp., École Polytechnique, Palaiseau, 1991

[11] P.L. Lions; T. Paul Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Volume 9 (1993), pp. 553-618

[12] P.L. Lions Mathematical Topics in Fluid Mechanics, vol. I: Incompressible Models, Oxford Lecture Series in Mathematics and Its Applications, vol. 3, Oxford University Press, 1996

[13] P.L. Lions Mathematical Topics in Fluid Mechanics, vol. II: Compressible Models, Oxford Lecture Series in Mathematics and Its Applications, vol. 10, Oxford University Press, 1998

Cited by Sources:

Comments - Policy