[Existence « presque partout » des équations de continuité avec données initiales mesures]
Dans cette Note, nous présentons des nouveaux résultats concernant l'existence, l'unicité (au sens « presque partout ») et la stabilité pour des équations de continuité avec données initiales mesures. Les preuves de tous ces résultats sont données dans Ambrosio et al. [4], avec aussi des applications à la limite semiclassique pour l'équation de Schrödinger.
The aim of this Note is to present some new results concerning “almost everywhere” well-posedness and stability of continuity equations with measure initial data. The proofs of all such results can be found in Ambrosio et al. [4], together with some application to the semiclassical limit of the Schrödinger equation.
Accepté le :
Publié le :
Luigi Ambrosio 1 ; Alessio Figalli 2
@article{CRMATH_2010__348_5-6_249_0, author = {Luigi Ambrosio and Alessio Figalli}, title = {Almost everywhere well-posedness of continuity equations with measure initial data}, journal = {Comptes Rendus. Math\'ematique}, pages = {249--252}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2010.01.018}, language = {en}, }
TY - JOUR AU - Luigi Ambrosio AU - Alessio Figalli TI - Almost everywhere well-posedness of continuity equations with measure initial data JO - Comptes Rendus. Mathématique PY - 2010 SP - 249 EP - 252 VL - 348 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2010.01.018 LA - en ID - CRMATH_2010__348_5-6_249_0 ER -
Luigi Ambrosio; Alessio Figalli. Almost everywhere well-posedness of continuity equations with measure initial data. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 249-252. doi : 10.1016/j.crma.2010.01.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.018/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004), pp. 227-260
[2] Transport equation and Cauchy problem for non-smooth vector fields, CIME Series, Cetraro, 2005 (B. Dacorogna; P. Marcellini, eds.) (Lecture Notes in Mathematics), Volume vol. 1927 (2008), pp. 2-41
[3] L. Ambrosio, G. Friesecke, J. Giannoulis, Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions, Comm. PDE, in press
[4] L. Ambrosio, A. Figalli, G. Friesecke, J. Giannoulis, Well posedness of transport equations with measure initial data and convergence of Wigner measures, work in preparation
[5] Measure Theory, vols. I and II, Springer, 2007
[6] Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 75-90
[7] Uniqueness of continuous solutions for BV vector fields, Duke Math. J., Volume 111 (2002) no. 2, pp. 357-384
[8] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511-547
[9] A. Figalli, T. Paul, work in preparation
[10] P. Gérard, Mesures semi-classiques et ondes de Bloch, in: Seminaire sur les Équations aux Dérivées Partielles, 1990–1991. Exp. No. XVI, 19 pp., École Polytechnique, Palaiseau, 1991
[11] Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Volume 9 (1993), pp. 553-618
[12] Mathematical Topics in Fluid Mechanics, vol. I: Incompressible Models, Oxford Lecture Series in Mathematics and Its Applications, vol. 3, Oxford University Press, 1996
[13] Mathematical Topics in Fluid Mechanics, vol. II: Compressible Models, Oxford Lecture Series in Mathematics and Its Applications, vol. 10, Oxford University Press, 1998
- Semiclassical analysis of the Schrödinger equation with conical singularities, Asymptotic Analysis, Volume 103 (2017) no. 4, p. 165 | DOI:10.3233/asy-171423
- Well posedness of ODE’s and continuity equations with nonsmooth vector fields, and applications, Revista Matemática Complutense, Volume 30 (2017) no. 3, p. 427 | DOI:10.1007/s13163-017-0244-3
- On the uniqueness of solutions to continuity equations, Journal of Differential Equations, Volume 259 (2015) no. 8, p. 3854 | DOI:10.1016/j.jde.2015.05.003
- On continuity equations in infinite dimensions with non-Gaussian reference measure, Journal of Functional Analysis, Volume 266 (2014) no. 7, p. 4490 | DOI:10.1016/j.jfa.2014.01.010
- Wigner Measure Propagation and Conical Singularity for General Initial Data, Archive for Rational Mechanics and Analysis, Volume 209 (2013) no. 1, p. 209 | DOI:10.1007/s00205-013-0622-z
- Corrigendum: Semiclassical Limit of Quantum Dynamics with Rough Potentials and Well‐Posedness of Transport Equations with Measure Initial Data, Communications on Pure and Applied Mathematics, Volume 66 (2013) no. 4, p. 646 | DOI:10.1002/cpa.21440
- Semiclassical limit of quantum dynamics with rough potentials and well‐posedness of transport equations with measure initial data, Communications on Pure and Applied Mathematics, Volume 64 (2011) no. 9, p. 1199 | DOI:10.1002/cpa.20371
- The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems, Nonlinear Conservation Laws and Applications, Volume 153 (2011), p. 181 | DOI:10.1007/978-1-4419-9554-4_7
Cité par 8 documents. Sources : Crossref
Commentaires - Politique