Étant donné un complexe cellulaire constitué de polytopes, plongé dans un espace Euclidien, nous construisons des espaces d'éléments finis de formes différentielles, conformes par rapport à la dérivée extérieure, contenant celles qui sont polynomiales de degré maximal donné, ayant localement la propriété de suite exacte et d'extension, de telle sorte que parmi tous les espaces ayant ces propriétés, ils ont la plus petite dimension. Plus généralement nous construisons, pour tout système d'éléments finis inclus dans un système d'éléments finis compatible, un système d'éléments finis compatible intermédiaire et de dimension minimale.
Given a cellular complex consisting of polytopes, embedded in a Euclidean space, we construct finite element spaces of differential forms, conforming with respect to the exterior derivative, containing those that are polynomial of given maximal degree, having locally the property of exact sequence and extension, so that among all spaces having these properties they have the smallest dimension. More generally we construct, for any finite element system included in a compatible finite element system, an intermediate compatible finite element system of minimal dimension.
Accepté le :
Publié le :
Snorre H. Christiansen 1
@article{CRMATH_2010__348_3-4_217_0, author = {Snorre H. Christiansen}, title = {\'El\'ements finis mixtes minimaux sur les poly\`edres}, journal = {Comptes Rendus. Math\'ematique}, pages = {217--221}, publisher = {Elsevier}, volume = {348}, number = {3-4}, year = {2010}, doi = {10.1016/j.crma.2010.01.017}, language = {fr}, }
Snorre H. Christiansen. Éléments finis mixtes minimaux sur les polyèdres. Comptes Rendus. Mathématique, Volume 348 (2010) no. 3-4, pp. 217-221. doi : 10.1016/j.crma.2010.01.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.01.017/
[1] Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155
[2] A construction of spaces of compatible differential forms on cellular complexes, Math. Models Methods Appl. Sci., Volume 18 (2008) no. 5, pp. 739-757
[3] Foundations of finite element methods for wave equations of Maxwell type, Applied Wave Mathematics, Springer, Berlin, Heidelberg, 2009, pp. 335-393
[4] Smoothed projections in finite element exterior calculus, Math. Comp., Volume 77 (2008) no. 262, pp. 813-829
[5] Canonical construction of finite elements, Math. Comp., Volume 68 (1999) no. 228, pp. 1325-1346
[6] Mixed finite elements in , Numer. Math., Volume 35 (1980) no. 3, pp. 315-341
Cité par Sources :
☆ This work, conducted as part of the award “Numerical analysis and simulations of geometric wave equations” made under the European Heads of Research Councils and European Science Foundation EURYI (European Young Investigator) Awards scheme, was supported by funds from the Participating Organizations of EURYI and the EC Sixth Framework Program.
Commentaires - Politique