[Un théorème d'unicité pour un modèle dyadique non visqueux]
Nous considérons les solutions du problème de Cauchy pour un modèle dyadique d'équations d'Euler. Nous démontrons l'existence et l'unicité globales des solutions de Leray–Hopf dans une classe assez large, ce qui implique en particulier l'existence et l'unicité dans pour toute condition initiale positive dans .
We consider the solutions of the Cauchy problem for a dyadic model of Euler equations. We prove global existence and uniqueness of Leray–Hopf solutions in a rather large class that implies in particular global existence and uniqueness in for all initial positive conditions in .
Accepté le :
Publié le :
D. Barbato 1 ; Franco Flandoli 2 ; Francesco Morandin 3
@article{CRMATH_2010__348_9-10_525_0, author = {D. Barbato and Franco Flandoli and Francesco Morandin}, title = {A theorem of uniqueness for an inviscid dyadic model}, journal = {Comptes Rendus. Math\'ematique}, pages = {525--528}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.03.007}, language = {en}, }
TY - JOUR AU - D. Barbato AU - Franco Flandoli AU - Francesco Morandin TI - A theorem of uniqueness for an inviscid dyadic model JO - Comptes Rendus. Mathématique PY - 2010 SP - 525 EP - 528 VL - 348 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2010.03.007 LA - en ID - CRMATH_2010__348_9-10_525_0 ER -
D. Barbato; Franco Flandoli; Francesco Morandin. A theorem of uniqueness for an inviscid dyadic model. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 525-528. doi : 10.1016/j.crma.2010.03.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.007/
[1] Energy dissipation and self-similar solutions for an unforced inviscid dyadic model (Trans. Amer. Math. Soc., in press) | arXiv
[2] Uniqueness for a stochastic inviscid dyadic model (Proc. Amer. Math. Soc., in press) | arXiv
[3] Blow-up in finite time for the dyadic model of the Navier–Stokes equations, Trans. Amer. Math. Soc., Volume 360 (2008) no. 10, pp. 5101-5120
[4] On admissibility criteria for weak solutions of the Euler equations | arXiv
[5] Blowup in a three-dimensional vector model for the Euler equations, Comm. Pure Appl. Math., Volume 57 (2004) no. 6, pp. 705-725
[6] Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc., Volume 357 (2005) no. 2, pp. 695-708
[7] On discrete models of the Euler equation, IMRN, Volume 38 (2005) no. 38, pp. 2315-2339
[8] Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934) no. 1, pp. 193-248
[9] On some dyadic models of the Euler equations, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 2913-2922
Cité par Sources :
Commentaires - Politique