Comptes Rendus
Ordinary Differential Equations
A theorem of uniqueness for an inviscid dyadic model
[Un théorème d'unicité pour un modèle dyadique non visqueux]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 525-528.

Nous considérons les solutions du problème de Cauchy pour un modèle dyadique d'équations d'Euler. Nous démontrons l'existence et l'unicité globales des solutions de Leray–Hopf dans une classe K assez large, ce qui implique en particulier l'existence et l'unicité dans l2 pour toute condition initiale positive dans l2.

We consider the solutions of the Cauchy problem for a dyadic model of Euler equations. We prove global existence and uniqueness of Leray–Hopf solutions in a rather large class K that implies in particular global existence and uniqueness in l2 for all initial positive conditions in l2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.03.007

D. Barbato 1 ; Franco Flandoli 2 ; Francesco Morandin 3

1 Dipartimento di Matematica Pura e Applicata, Università di Padova, via Trieste, 63, 35121 Padova, Italy
2 Dipartimento di Matematica Applicata, Università di Pisa, via Buonarroti, 1, 56127 Pisa, Italy
3 Dipartimento di Matematica, Università di Parma, viale G.P. Usberti, 53A, 43124 Parma, Italy
@article{CRMATH_2010__348_9-10_525_0,
     author = {D. Barbato and Franco Flandoli and Francesco Morandin},
     title = {A theorem of uniqueness for an inviscid dyadic model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {525--528},
     publisher = {Elsevier},
     volume = {348},
     number = {9-10},
     year = {2010},
     doi = {10.1016/j.crma.2010.03.007},
     language = {en},
}
TY  - JOUR
AU  - D. Barbato
AU  - Franco Flandoli
AU  - Francesco Morandin
TI  - A theorem of uniqueness for an inviscid dyadic model
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 525
EP  - 528
VL  - 348
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2010.03.007
LA  - en
ID  - CRMATH_2010__348_9-10_525_0
ER  - 
%0 Journal Article
%A D. Barbato
%A Franco Flandoli
%A Francesco Morandin
%T A theorem of uniqueness for an inviscid dyadic model
%J Comptes Rendus. Mathématique
%D 2010
%P 525-528
%V 348
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2010.03.007
%G en
%F CRMATH_2010__348_9-10_525_0
D. Barbato; Franco Flandoli; Francesco Morandin. A theorem of uniqueness for an inviscid dyadic model. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 525-528. doi : 10.1016/j.crma.2010.03.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.007/

[1] D. Barbato; F. Flandoli; F. Morandin Energy dissipation and self-similar solutions for an unforced inviscid dyadic model (Trans. Amer. Math. Soc., in press) | arXiv

[2] D. Barbato; F. Flandoli; F. Morandin Uniqueness for a stochastic inviscid dyadic model (Proc. Amer. Math. Soc., in press) | arXiv

[3] A. Cheskidov Blow-up in finite time for the dyadic model of the Navier–Stokes equations, Trans. Amer. Math. Soc., Volume 360 (2008) no. 10, pp. 5101-5120

[4] C. De Lellis; L. Székelyhidi On admissibility criteria for weak solutions of the Euler equations | arXiv

[5] S. Friedlander; N. Pavlovic Blowup in a three-dimensional vector model for the Euler equations, Comm. Pure Appl. Math., Volume 57 (2004) no. 6, pp. 705-725

[6] N.H. Katz; N. Pavlovic Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc., Volume 357 (2005) no. 2, pp. 695-708

[7] A. Kiselev; A. Zlatoš On discrete models of the Euler equation, IMRN, Volume 38 (2005) no. 38, pp. 2315-2339

[8] J. Leray Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1934) no. 1, pp. 193-248

[9] F. Waleffe On some dyadic models of the Euler equations, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 2913-2922

Cité par Sources :

Commentaires - Politique