[Amélioration de la conservation de la masse pour la méthode des fonctions de niveaux en éléments finis]
Dans cette Note, nous proposons un nouvel algorithme pour améliorer la conservation de la masse dans la méthode des fonctions de niveau dans un cadre éléments finis. Deux types de multiplicateurs de Lagrange sont introduits, associés respectivement à l'équation de redistanciation et à celle d'advection. Le premier est localisé au voisinage de l'interface, tandis que le second est associé à une correction globale au domaine de calcul. Les performances de la méthode proposée sont testées avec le cas test du disque de Zalesak, et nous observons que le taux de convergence par rapport au la taille des éléments du maillage est amélioré.
In this Note, a new algorithm is proposed for improving the mass conservation of the level set method in the finite element context. Two kinds of Lagrange multipliers are introduced, associated respectively to the redistancing and advection equations. The first one, is located at the vicinity of the interface, while the second one is associated to a correction that is global to the domain. The performances of the proposed method are tested on the Zalesak test case, and the convergence rate versus the element mesh size are founded to be improved.
Accepté le :
Publié le :
Aymen Laadhari 1 ; Pierre Saramito 1 ; Chaouqi Misbah 1
@article{CRMATH_2010__348_9-10_535_0, author = {Aymen Laadhari and Pierre Saramito and Chaouqi Misbah}, title = {Improving the mass conservation of the level set method in a finite element context}, journal = {Comptes Rendus. Math\'ematique}, pages = {535--540}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.03.011}, language = {en}, }
TY - JOUR AU - Aymen Laadhari AU - Pierre Saramito AU - Chaouqi Misbah TI - Improving the mass conservation of the level set method in a finite element context JO - Comptes Rendus. Mathématique PY - 2010 SP - 535 EP - 540 VL - 348 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2010.03.011 LA - en ID - CRMATH_2010__348_9-10_535_0 ER -
%0 Journal Article %A Aymen Laadhari %A Pierre Saramito %A Chaouqi Misbah %T Improving the mass conservation of the level set method in a finite element context %J Comptes Rendus. Mathématique %D 2010 %P 535-540 %V 348 %N 9-10 %I Elsevier %R 10.1016/j.crma.2010.03.011 %G en %F CRMATH_2010__348_9-10_535_0
Aymen Laadhari; Pierre Saramito; Chaouqi Misbah. Improving the mass conservation of the level set method in a finite element context. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 535-540. doi : 10.1016/j.crma.2010.03.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.011/
[1] A hybrid particle level set method for improved interface capturing, J. Comput. Phys., Volume 183 (2002), pp. 83-116
[2] Weighted ENO schemes for Hamilton–Jacobi equations, SIAM J. Sci. Comput., Volume 21 (2000), pp. 2126-2143
[3] The Level Set Method and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2003
[4] On the transport-diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math., Volume 38 (1982) no. 3, pp. 309-332
[5] http://www-lmc.imag.fr/lmc-edp/Pierre.Saramito/rheolef (Rheolef: A finite element environment, i.e. some C++ classes and Unix commands)
, 2008[6] Methods and Fast Marching Methods, Cambridge University Press, 1999
[7] An efficient, interface preserving level set re-distancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput., Volume 20 (1998) no. 4, pp. 1165-1191
[8] Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., Volume 31 (1979), pp. 335-362
Cité par Sources :
Commentaires - Politique