[Une algèbre d'observables pour les birapports]
Nous introduisons une algèbre de Poisson, l'algèbre d'échange, définie à l'aide de l'intersection des courbes dans le disque. Nous interprétons l'algèbre des multifractions – une sous-algèbre de l'algèbre des fractions de l'algèbre d'échange – comme une algèbre de fonctions sur l'espace des birapports et donc en particulier comme une algèbre de fonctions sur la composante de Hitchin ainsi que sur l'espace des -opers d'holonomie triviale. Nous relions alors notre structure de Poisson à la structure de Poisson de Drinfel'd–Sokolov ainsi qu'à la structure symplectique d'Atiyah–Bott–Goldman.
We define a Poisson Algebra called the swapping algebra using the intersection of curves in the disk. We interpret a subalgebra of the fraction swapping algebra – called the algebra of multifractions – as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of -opers with trivial holonomy. We finally relate our Poisson structure to the Drinfel'd–Sokolov structure and to the Atiyah–Bott–Goldman symplectic structure.
Publié le :
François Labourie 1
@article{CRMATH_2010__348_9-10_503_0, author = {Fran\c{c}ois Labourie}, title = {An algebra of observables for cross ratios}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--507}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.03.012}, language = {en}, }
François Labourie. An algebra of observables for cross ratios. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 503-507. doi : 10.1016/j.crma.2010.03.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.012/
[1] The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983) no. 1505, pp. 523-615
[2] Lectures on classical W-algebras, Acta Appl. Math., Volume 47 (1997) no. 3, pp. 243-321
[3] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. IHES, Volume 103 (2006), pp. 1-211
[4] The symplectic nature of fundamental groups of surfaces, Adv. Math., Volume 54 (1984) no. 2, pp. 200-225
[5] Lie groups and Teichmüller space, Topology, Volume 31 (1992) no. 3, pp. 449-473
[6] Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114
[7] Cross ratios, surface groups, and diffeomorphisms of the circle, Publ. Math. IHES, Volume 106 (2007), pp. 139-213
[8] Separability properties of free groups and surface groups, J. Pure Appl. Algebra, Volume 78 (1992) no. 1, pp. 77-84
[9] The geometry of the KdV equation, Internat. J. Modern Phys. A, Volume 6 (1991) no. 16, pp. 2859-2869
[10] Surprises with topological field theories, IASSNS-HEP-90-37 (1991), pp. 50-61
Cité par Sources :
☆ Partially supported by the ANR program ETTT-ANR-09-BLAN-0116-01 and the ANR program RepSurfaces-ANR-06-BLAN-0311.
Commentaires - Politique