[Une algèbre d'observables pour les birapports]
We define a Poisson Algebra called the swapping algebra using the intersection of curves in the disk. We interpret a subalgebra of the fraction swapping algebra – called the algebra of multifractions – as an algebra of functions on the space of cross ratios and thus as an algebra of functions on the Hitchin component as well as on the space of
Nous introduisons une algèbre de Poisson, l'algèbre d'échange, définie à l'aide de l'intersection des courbes dans le disque. Nous interprétons l'algèbre des multifractions – une sous-algèbre de l'algèbre des fractions de l'algèbre d'échange – comme une algèbre de fonctions sur l'espace des birapports et donc en particulier comme une algèbre de fonctions sur la composante de Hitchin ainsi que sur l'espace des
Publié le :
François Labourie 1
@article{CRMATH_2010__348_9-10_503_0, author = {Fran\c{c}ois Labourie}, title = {An algebra of observables for cross ratios}, journal = {Comptes Rendus. Math\'ematique}, pages = {503--507}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.03.012}, language = {en}, }
François Labourie. An algebra of observables for cross ratios. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 503-507. doi : 10.1016/j.crma.2010.03.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.012/
[1] The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983) no. 1505, pp. 523-615
[2] Lectures on classical W-algebras, Acta Appl. Math., Volume 47 (1997) no. 3, pp. 243-321
[3] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. IHES, Volume 103 (2006), pp. 1-211
[4] The symplectic nature of fundamental groups of surfaces, Adv. Math., Volume 54 (1984) no. 2, pp. 200-225
[5] Lie groups and Teichmüller space, Topology, Volume 31 (1992) no. 3, pp. 449-473
[6] Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114
[7] Cross ratios, surface groups,
[8] Separability properties of free groups and surface groups, J. Pure Appl. Algebra, Volume 78 (1992) no. 1, pp. 77-84
[9] The geometry of the KdV equation, Internat. J. Modern Phys. A, Volume 6 (1991) no. 16, pp. 2859-2869
[10] Surprises with topological field theories, IASSNS-HEP-90-37 (1991), pp. 50-61
Cité par Sources :
☆ Partially supported by the ANR program ETTT-ANR-09-BLAN-0116-01 and the ANR program RepSurfaces-ANR-06-BLAN-0311.
Commentaires - Politique