In recent years, relatively sharp quantitative results in the spirit of the Besicovitch projection theorem have been obtained for self-similar sets by studying the norms of the “projection multiplicity” functions, , where is the number of connected components of the partial fractal set that orthogonally project in the θ direction to cover x. In Nazarov et al. (2008) [4], it was shown that n-th partial 4-corner Cantor set with self-similar scaling factor 1/4 decays in Favard length at least as fast as , for . In Bond and Volberg (2009) [1], this same estimate was proved for the 1-dimensional Sierpinski gasket for some . A few observations were needed to adapt the approach of Nazarov et al. (2008) [4] to the gasket: we sketch them here. We also formulate a result about all self-similar sets of dimension 1.
On donne une estimation de la probabilité pour que l'aiguille de Buffon soit ϵ-proche d'un ensemble de Cantor–Sierpinski. On trouve une majoration de cette probabilité en , où c est une constante strictement positive, cette constante n'est pas connue de mannière précise, mais l'estimation est optimale.
Accepted:
Published online:
Matthew Bond 1; Alexander Volberg 1, 2
@article{CRMATH_2010__348_11-12_653_0, author = {Matthew Bond and Alexander Volberg}, title = {Buffon needle lands in \protect\emph{\ensuremath{\epsilon}}-neighborhood of a 1-dimensional {Sierpinski} {Gasket} with probability at most $ {|\mathrm{log}\phantom{\rule{0.2em}{0ex}}\ensuremath{\epsilon}|}^{-c}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {653--656}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.006}, language = {en}, }
TY - JOUR AU - Matthew Bond AU - Alexander Volberg TI - Buffon needle lands in ϵ-neighborhood of a 1-dimensional Sierpinski Gasket with probability at most $ {|\mathrm{log}\phantom{\rule{0.2em}{0ex}}ϵ|}^{-c}$ JO - Comptes Rendus. Mathématique PY - 2010 SP - 653 EP - 656 VL - 348 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2010.04.006 LA - en ID - CRMATH_2010__348_11-12_653_0 ER -
%0 Journal Article %A Matthew Bond %A Alexander Volberg %T Buffon needle lands in ϵ-neighborhood of a 1-dimensional Sierpinski Gasket with probability at most $ {|\mathrm{log}\phantom{\rule{0.2em}{0ex}}ϵ|}^{-c}$ %J Comptes Rendus. Mathématique %D 2010 %P 653-656 %V 348 %N 11-12 %I Elsevier %R 10.1016/j.crma.2010.04.006 %G en %F CRMATH_2010__348_11-12_653_0
Matthew Bond; Alexander Volberg. Buffon needle lands in ϵ-neighborhood of a 1-dimensional Sierpinski Gasket with probability at most $ {|\mathrm{log}\phantom{\rule{0.2em}{0ex}}ϵ|}^{-c}$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 653-656. doi : 10.1016/j.crma.2010.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.006/
[1] The Power Law for Buffon's Needle Landing Near the Sierpinski Gasket, 2009 (pp. 1–34) | arXiv
[2] The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, New York, 1986
[3] Favard length of product Cantor sets, February 5, 2009 | arXiv
[4] The power law for the Buffon needle probability of the four-corner Cantor set, 2008 (pp. 1–15) | arXiv
[5] How likely is Buffon's needle to fall near a planar Cantor set?, Pacific J. Math., Volume 204 (2002) no. 2, pp. 473-496
[6] A quantitative version of the Besicovitch projection theorem via multiscale analysis, 18 June 2007 (pp. 1–28) | arXiv
Cited by Sources:
Comments - Policy