[Comportement asymptotique des opérateurs polynomialement bornés]
Soit T un opérateur polynomialement borné sur un espace de Banach et soit la plus petite algèbre de Banach uniformement fermé contenant T et l'identité. Il est montré dans cet article que pour tout ,
Let T be a polynomially bounded operator on a complex Banach space and let be the smallest uniformly closed (Banach) algebra that contains T and the identity operator. It is shown that for every ,
Accepté le :
Publié le :
Heybetkulu S. Mustafayev 1
@article{CRMATH_2010__348_9-10_517_0, author = {Heybetkulu S. Mustafayev}, title = {Asymptotic behavior of polynomially bounded operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {517--520}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.04.003}, language = {en}, }
Heybetkulu S. Mustafayev. Asymptotic behavior of polynomially bounded operators. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 517-520. doi : 10.1016/j.crma.2010.04.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.003/
[1] Theorems of Katznelson–Tzafriri type for contractions, J. Funct. Anal., Volume 94 (1990), pp. 273-287
[2] On power bounded operators, J. Funct. Anal., Volume 68 (1986), pp. 313-328
[3] Polynomially bounded operators whose spectrum on the unit circle has measure zero, Acta Sci. Math. (Szeged), Volume 63 (1997), pp. 551-562
[4] Banach Algebras, Marcel-Dekker, Inc., New York, 1973
[5] Dissipative operators on Banach spaces, J. Funct. Anal., Volume 248 (2007), pp. 428-447
[6] Treatise on the Shift Operator, Nauka, Moscow, 1980 (in Russian)
[7] Theorems of Katznelson–Tzafriri type for semigroups of operators, J. Funct. Anal., Volume 94 (1990), pp. 273-287
[8] A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc., Volume 10 (1997), pp. 351-369
[9] Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970
[10] On polynomially bounded operators acting on a Banach space, J. Funct. Anal., Volume 225 (2005), pp. 147-166
Cité par Sources :
Commentaires - Politique