[Sur certaines inégalités de Bourgain, Brezis, Maz'ya et Shaposhnikova concernant les champs de vecteurs dans
Bourgain and Brezis established, for maps
Bourgain and Brezis ont montré que, si
Publié le :
Petru Mironescu 1
@article{CRMATH_2010__348_9-10_513_0, author = {Petru Mironescu}, title = {On some inequalities of {Bourgain,} {Brezis,} {Maz'ya,} and {Shaposhnikova} related to $ {L}^{1}$ vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {513--515}, publisher = {Elsevier}, volume = {348}, number = {9-10}, year = {2010}, doi = {10.1016/j.crma.2010.03.019}, language = {en}, }
TY - JOUR AU - Petru Mironescu TI - On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $ {L}^{1}$ vector fields JO - Comptes Rendus. Mathématique PY - 2010 SP - 513 EP - 515 VL - 348 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2010.03.019 LA - en ID - CRMATH_2010__348_9-10_513_0 ER -
Petru Mironescu. On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $ {L}^{1}$ vector fields. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 513-515. doi : 10.1016/j.crma.2010.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.019/
[1] On the equation
[2] New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 539-543 (393–426)
[3] New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007), pp. 277-315
[4] Bourgain–Brezis type inequality with explicit constants (L. De Carli; M. Milman, eds.), Interpolation Theory and Applications, Contemp. Math., vol. 445, AMS, Providence, RI, 2007, pp. 247-252
[5] Estimates for differential operators of vector analysis involving
[6] A collection of sharp dilation invariant integral inequalities for differentiable functions (V. Maz'ya, ed.), Sobolev Spaces in Mathematics I, Int. Math. Ser. (N. Y.), vol. 8, Springer, New York, 2009, pp. 223-247
[7] Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971
- Bergman-Bourgain-Brezis-type inequality, Journal of Functional Analysis, Volume 281 (2021) no. 9, p. 33 (Id/No 109201) | DOI:10.1016/j.jfa.2021.109201 | Zbl:1476.30171
- An optimal Sobolev embedding for
, Journal of Functional Analysis, Volume 279 (2020) no. 3, p. 25 (Id/No 108559) | DOI:10.1016/j.jfa.2020.108559 | Zbl:1455.46039 - Approximation in higher-order Sobolev spaces and Hodge systems, Journal of Functional Analysis, Volume 276 (2019) no. 5, pp. 1430-1478 | DOI:10.1016/j.jfa.2018.08.003 | Zbl:1417.46021
- Hierarchical construction of bounded solutions in critical regularity spaces, Communications on Pure and Applied Mathematics, Volume 69 (2016) no. 6, pp. 1087-1109 | DOI:10.1002/cpa.21575 | Zbl:1342.35063
- Limiting Bourgain-Brezis estimates for systems of linear differential equations: theme and variations, Journal of Fixed Point Theory and Applications, Volume 15 (2014) no. 2, pp. 273-297 | DOI:10.1007/s11784-014-0177-0 | Zbl:1311.35005
- A subelliptic Bourgain-Brezis inequality, Journal of the European Mathematical Society (JEMS), Volume 16 (2014) no. 4, pp. 649-693 | DOI:10.4171/jems/443 | Zbl:1295.35201
- A limiting case for the divergence equation, Mathematische Zeitschrift, Volume 274 (2013) no. 1-2, pp. 427-460 | DOI:10.1007/s00209-012-1077-x | Zbl:1275.35077
Cité par 7 documents. Sources : zbMATH
Commentaires - Politique