Comptes Rendus
Mathematical Analysis
On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to L1 vector fields
[Sur certaines inégalités de Bourgain, Brezis, Maz'ya et Shaposhnikova concernant les champs de vecteurs dans L1]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 513-515.

Bourgain and Brezis established, for maps fLn(Tn) with zero average, the existence of a solution YW1,nL of (1) divY=f. Maz'ya proved that if, in addition, fHn/21(Tn), then (1) can be solved in Hn/2L. Their arguments are quite different. We present an elementary property of fundamental solutions of the biharmonic operator in two dimensions. This property unifies, in two dimensions, the two approaches, and implies another (apparently unrelated) estimate of Maz'ya and Shaposhnikova. We discuss higher dimensional analogs of the above results.

Bourgain and Brezis ont montré que, si fLn(Tn) est de moyenne nulle, alors (1) divY=f a une solution YW1,nC0. Maz'ya a prouvé que si, de plus, on a fHn/21(Tn), alors il existe une solution de (1) dans Hn/2L. Les deux preuves sont distinctes. Dans cette note, nous présentons une propriété élémentaire des solutions fondamentales de l'opérateur biharmonique en dimension deux. Cette propriété unifie, en dimension deux, les approches de Bourgain–Brezis et Maz'ya, et implique une autre estimation de Maz'ya et Shaposhnikova (apparemment non liée aux précédentes). Nous discutons des variantes de ces résultats en dimension supérieure.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.03.019

Petru Mironescu 1

1 Université de Lyon, Université Lyon 1, CNRS, UMR 5208 Institut Camille-Jordan, bâtiment du Doyen Jean-Braconnier, 43, boulevard du 11 novembre 1918, 69200 Villeurbanne cedex, France
@article{CRMATH_2010__348_9-10_513_0,
     author = {Petru Mironescu},
     title = {On some inequalities of {Bourgain,} {Brezis,} {Maz'ya,} and {Shaposhnikova} related to $ {L}^{1}$ vector fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {513--515},
     publisher = {Elsevier},
     volume = {348},
     number = {9-10},
     year = {2010},
     doi = {10.1016/j.crma.2010.03.019},
     language = {en},
}
TY  - JOUR
AU  - Petru Mironescu
TI  - On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $ {L}^{1}$ vector fields
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 513
EP  - 515
VL  - 348
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2010.03.019
LA  - en
ID  - CRMATH_2010__348_9-10_513_0
ER  - 
%0 Journal Article
%A Petru Mironescu
%T On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $ {L}^{1}$ vector fields
%J Comptes Rendus. Mathématique
%D 2010
%P 513-515
%V 348
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2010.03.019
%G en
%F CRMATH_2010__348_9-10_513_0
Petru Mironescu. On some inequalities of Bourgain, Brezis, Maz'ya, and Shaposhnikova related to $ {L}^{1}$ vector fields. Comptes Rendus. Mathématique, Volume 348 (2010) no. 9-10, pp. 513-515. doi : 10.1016/j.crma.2010.03.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.03.019/

[1] J. Bourgain; H. Brezis On the equation divY=f and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003), pp. 393-426

[2] J. Bourgain; H. Brezis New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 539-543 (393–426)

[3] J. Bourgain; H. Brezis New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., Volume 9 (2007), pp. 277-315

[4] V. Maz'ya Bourgain–Brezis type inequality with explicit constants (L. De Carli; M. Milman, eds.), Interpolation Theory and Applications, Contemp. Math., vol. 445, AMS, Providence, RI, 2007, pp. 247-252

[5] V. Maz'ya Estimates for differential operators of vector analysis involving L1-norm, J. Eur. Math. Soc., Volume 12 (2010), pp. 221-240

[6] V. Maz'ya; T. Shaposhnikova A collection of sharp dilation invariant integral inequalities for differentiable functions (V. Maz'ya, ed.), Sobolev Spaces in Mathematics I, Int. Math. Ser. (N. Y.), vol. 8, Springer, New York, 2009, pp. 223-247

[7] E. Stein; G. Weiss Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971

  • Francesca Da Lio; Tristan Rivière; Jerome Wettstein Bergman-Bourgain-Brezis-type inequality, Journal of Functional Analysis, Volume 281 (2021) no. 9, p. 33 (Id/No 109201) | DOI:10.1016/j.jfa.2021.109201 | Zbl:1476.30171
  • Daniel Spector An optimal Sobolev embedding for L1, Journal of Functional Analysis, Volume 279 (2020) no. 3, p. 25 (Id/No 108559) | DOI:10.1016/j.jfa.2020.108559 | Zbl:1455.46039
  • Pierre Bousquet; Emmanuel Russ; Yi Wang; Po-Lam Yung Approximation in higher-order Sobolev spaces and Hodge systems, Journal of Functional Analysis, Volume 276 (2019) no. 5, pp. 1430-1478 | DOI:10.1016/j.jfa.2018.08.003 | Zbl:1417.46021
  • Eitan Tadmor Hierarchical construction of bounded solutions in critical regularity spaces, Communications on Pure and Applied Mathematics, Volume 69 (2016) no. 6, pp. 1087-1109 | DOI:10.1002/cpa.21575 | Zbl:1342.35063
  • Jean van Schaftingen Limiting Bourgain-Brezis estimates for systems of linear differential equations: theme and variations, Journal of Fixed Point Theory and Applications, Volume 15 (2014) no. 2, pp. 273-297 | DOI:10.1007/s11784-014-0177-0 | Zbl:1311.35005
  • Yi Wang; Po-Lam Yung A subelliptic Bourgain-Brezis inequality, Journal of the European Mathematical Society (JEMS), Volume 16 (2014) no. 4, pp. 649-693 | DOI:10.4171/jems/443 | Zbl:1295.35201
  • Pierre Bousquet; Petru Mironescu; Emmanuel Russ A limiting case for the divergence equation, Mathematische Zeitschrift, Volume 274 (2013) no. 1-2, pp. 427-460 | DOI:10.1007/s00209-012-1077-x | Zbl:1275.35077

Cité par 7 documents. Sources : zbMATH

Commentaires - Politique