[Algèbres de Hopf pointées sur quelques groupes simples sporadiques]
Soit G un groupe sporadique différent du groupe de Fischer , du bébé monstre B et du monstre M. Soit H une algèbre de Hopf complexe pointée de dimension finie dont le groupe des éléments dont le co-produit est égal au carré tensoriel est isomorphisme à G, alors H est isomorphe a l'algèbre de groupe de G.
Any finite-dimensional complex pointed Hopf algebra with group of group-likes isomorphic to a sporadic group, with the possible exception of the Fischer group , the Baby Monster B and the Monster M, is a group algebra.
Accepté le :
Publié le :
N. Andruskiewitsch 1 ; F. Fantino 1 ; M. Graña 2 ; L. Vendramin 2, 3
@article{CRMATH_2010__348_11-12_605_0, author = {N. Andruskiewitsch and F. Fantino and M. Gra\~na and L. Vendramin}, title = {Pointed {Hopf} algebras over some sporadic simple groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {605--608}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.023}, language = {en}, }
TY - JOUR AU - N. Andruskiewitsch AU - F. Fantino AU - M. Graña AU - L. Vendramin TI - Pointed Hopf algebras over some sporadic simple groups JO - Comptes Rendus. Mathématique PY - 2010 SP - 605 EP - 608 VL - 348 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2010.04.023 LA - en ID - CRMATH_2010__348_11-12_605_0 ER -
N. Andruskiewitsch; F. Fantino; M. Graña; L. Vendramin. Pointed Hopf algebras over some sporadic simple groups. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 605-608. doi : 10.1016/j.crma.2010.04.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.023/
[1] New techniques for pointed Hopf algebras, New developments in Lie theory and geometry, Contemp. Math., Volume 491 (2009), pp. 323-348
[2] Finite-dimensional pointed Hopf algebras with alternating groups are trivial | arXiv
[3] Pointed Hopf algebras over the sporadic groups | arXiv
[4] On pointed Hopf algebras associated to symmetric groups, Manuscripta Math., Volume 128 (2009), pp. 359-371
[5] From racks to pointed Hopf algebras, Adv. Math., Volume 178 (2003), pp. 177-243
[6] The Nichols algebra of a semisimple Yetter-Drinfeld module | arXiv
[7] Pointed hopf algebras, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., vol. 43, Univ. Press, Cambridge, 2002, pp. 1-68
[8] On the classification of finite-dimensional pointed Hopf algebras, Ann. Math., Volume 171 (2010), pp. 375-417
[9] On pointed Hopf algebras associated with Mathieu groups, J. Algebra Appl., Volume 8 (2009), pp. 633-672
[10] On Nichols algebras over and , J. Math. Phys., Volume 48 (2007) no. 123513, pp. 1-11
[11] On Nichols algebras over and , J. Algebra Appl., Volume 9 (2010) no. 2, pp. 195-208
[12] GAP – Groups, Algorithms, and Programming, 2008 http://www.gap-system.org (Version 4.4.12)
[13] Classification of arithmetic root systems, Adv. Math., Volume 220 (2009), pp. 59-124
[14] Root systems and Weyl groupoids for semisimple Nichols algebras (Proc. London Math. Soc.) | arXiv
[15] Atlas of finite group representations http://brauer.maths.qmul.ac.uk/Atlas/v3/ (Version 3 2005/6/7)
[16] AtlasRep, A GAP Interface to the Atlas of Group Representations http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep (Version 1.4 2008, Refereed GAP package)
Cité par Sources :
☆ Some of the results presented here are part of the PhD theses of F.F. and L.V., work under the supervision of N.A. and M.G., respectively. This work was partially supported by ANPCyT-Foncyt, CONICET, Ministerio de Ciencia y Tecnología (Córdoba) and Secyt (UNC).
Commentaires - Politique