[Trou spectral dans
It is shown that if
On démontre que si
Accepté le :
Publié le :
Jean Bourgain 1 ; Alexander Gamburd 2
@article{CRMATH_2010__348_11-12_609_0, author = {Jean Bourgain and Alexander Gamburd}, title = {Spectral gaps in $ \mathit{SU}(d)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {609--611}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.024}, language = {en}, }
Jean Bourgain; Alexander Gamburd. Spectral gaps in $ \mathit{SU}(d)$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 609-611. doi : 10.1016/j.crma.2010.04.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.024/
[1] Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, 1985
[2] On the Erdos–Volkmann and Katz–Tao ring conjectures, Geom. Funct. Anal., Volume 13 (2003) no. 2, pp. 334-365
[3] J. Bourgain, The discretized ring and projection theorems, J. Anal., in press
[4] On the spectral gap for finitely generated subgroups of
[5] Expansion and random walks in
[6] On dense free subgroups of Lie groups, J. Algebra, Volume 261 (2003) no. 2, pp. 448-467
[7] Additive Combinatorics, Cambridge Stud. Adv. Math., vol. 105, 2006
- Random
-cover on compact Riemannian symmetric space, Journal of Lie Theory, Volume 34 (2024) no. 1, pp. 137-169 | Zbl:1554.43010 - Arithmetic and dynamics on varieties of Markoff type, International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 3. Sections 1–4, Berlin: European Mathematical Society (EMS), 2023, pp. 1800-1836 | DOI:10.4171/icm2022/191 | Zbl:1551.14103
- Measure expanding actions, expanders and warped cones, Transactions of the American Mathematical Society, Volume 371 (2019) no. 3, pp. 1951-1979 | DOI:10.1090/tran/7368 | Zbl:1402.05205
- Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures, Physical Review A, Volume 96 (2017) no. 1 | DOI:10.1103/physreva.96.012306
- Almost optimal pseudorandom generators for spherical caps (extended abstract), Proceedings of the 47th annual ACM symposium on theory of computing, STOC '15, Portland, OR, USA, June 14–17, 2015, New York, NY: Association for Computing Machinery (ACM), 2015, pp. 247-256 | DOI:10.1145/2746539.2746611 | Zbl:1321.65008
- Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts, Discrete Continuous Dynamical Systems - A, Volume 33 (2013) no. 9, p. 4239 | DOI:10.3934/dcds.2013.33.4239
- On the Furstenberg measure and density of states for the Anderson-Bernoulli model at small disorder, Journal d'Analyse Mathématique, Volume 117 (2012), pp. 273-295 | DOI:10.1007/s11854-012-0022-6 | Zbl:1275.82006
- A spectral gap theorem in SU
, Journal of the European Mathematical Society (JEMS), Volume 14 (2012) no. 5, pp. 1455-1511 | DOI:10.4171/jems/337 | Zbl:1254.43010 - Quenched central limit theorem for random walks with a spectral gap, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 349 (2011) no. 13-14, pp. 801-805 | DOI:10.1016/j.crma.2011.06.017 | Zbl:1225.60040
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier