[Décomposition des applications unimodulaires dans les espaces de Sobolev]
Soient
Let
Accepté le :
Publié le :
Petru Mironescu 1
@article{CRMATH_2010__348_13-14_743_0, author = {Petru Mironescu}, title = {Decomposition of $ {\mathbb{S}}^{1}$-valued maps in {Sobolev} spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {743--746}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.06.020}, language = {en}, }
Petru Mironescu. Decomposition of $ {\mathbb{S}}^{1}$-valued maps in Sobolev spaces. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 743-746. doi : 10.1016/j.crma.2010.06.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.020/
[1] Functions with prescribed singularities, J. Eur. Math. Soc., Volume 5 (2003) no. 3, pp. 275-311
[2] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., Volume 63 (1977), pp. 337-403
[3] Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988), pp. 60-75
[4] On the equation
[5] Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37-86
[6]
[7] Topological singularities in
[8] P. Bousquet, P. Mironescu, in preparation
[9] Harmonic maps with defects, Comm. Math. Phys., Volume 107 (1986) no. 4, pp. 649-705
[10] Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 (2001), pp. 387-404
[11]
[12] Functions of bounded higher variation, Indiana Univ. Math. J., Volume 51 (2002), pp. 645-677
[13] An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, J. Evol. Equ., Volume 2 (2002) no. 1, pp. 113-125
[14] Lifting default for
[15]
[16] P. Mironescu, Sobolev spaces of circle-valued maps, in preparation
[17] Multiple Integrals in the Calculus of Variations, Die Grundlehren der mathematischen Wissenschaften, vol. 130, Springer-Verlag New York, Inc., New York, 1966
[18] Inequalities related to liftings and applications, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 17–18, pp. 957-962
[19] The weak convergence of completely additive vector-valued set functions, Sibirsk. Mat. Zh., Volume 9 (1968), pp. 1386-1394
- Lifting of fractional Sobolev mappings to noncompact covering spaces, Annales de l'Institut Henri Poincaré C. Analyse Non Linéaire, Volume 42 (2025) no. 1, pp. 41-84 | DOI:10.4171/aihpc/98 | Zbl:7988204
- Lifting in Besov spaces, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 193 (2020), p. 44 (Id/No 111489) | DOI:10.1016/j.na.2019.03.012 | Zbl:1458.46024
- Uniform boundedness principles for Sobolev maps into manifolds, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 36 (2019) no. 2, pp. 417-449 | DOI:10.1016/j.anihpc.2018.06.002 | Zbl:1418.46035
- Sum-Intersection Property of Sobolev Spaces, Current Research in Nonlinear Analysis, Volume 135 (2018), p. 203 | DOI:10.1007/978-3-319-89800-1_8
- Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 32 (2015) no. 5, pp. 965-1013 | DOI:10.1016/j.anihpc.2014.04.005 | Zbl:1339.46037
- Density in
, Journal of Functional Analysis, Volume 269 (2015) no. 7, pp. 2045-2109 | DOI:10.1016/j.jfa.2015.04.005 | Zbl:1516.46021 - Prescribing the Jacobian in critical spaces, Journal d'Analyse Mathématique, Volume 122 (2014), pp. 317-373 | DOI:10.1007/s11854-014-0010-0 | Zbl:1317.46021
- A new obstruction to the extension problem for Sobolev maps between manifolds, Journal of Fixed Point Theory and Applications, Volume 15 (2014) no. 1, pp. 155-183 | DOI:10.1007/s11784-014-0185-0 | Zbl:1321.46035
- Estimates for the topological degree and related topics, Journal of Fixed Point Theory and Applications, Volume 15 (2014) no. 1, pp. 185-215 | DOI:10.1007/s11784-014-0182-3 | Zbl:1321.46037
- Two-dimensional unit-length vector fields of vanishing divergence, Journal of Functional Analysis, Volume 262 (2012) no. 8, pp. 3465-3494 | DOI:10.1016/j.jfa.2012.01.014 | Zbl:1246.46031
- Decomposition of
-valued maps in Sobolev spaces, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 13-14, pp. 743-746 | DOI:10.1016/j.crma.2010.06.020 | Zbl:1205.46017 -
-valued Sobolev maps, Journal of Mathematical Sciences (New York), Volume 170 (2010) no. 3, pp. 340-355 | DOI:10.1007/s10958-010-0090-z | Zbl:1307.46024 - Lifting default for
-valued maps, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 346 (2008) no. 19-20, pp. 1039-1044 | DOI:10.1016/j.crma.2008.08.001 | Zbl:1168.46305
Cité par 13 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier