Comptes Rendus
Numerical Analysis
A time discretization scheme of a characteristics method for a fluid–rigid system with discontinuous density
Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 935-939.

We propose a new characteristics method for the time discretization of a fluid–rigid system in the case when the densities of the fluid and the solid are different. This method is based on a global weak formulation involving only terms defined on the whole fluid–rigid domain. The main idea is to construct a characteristic function which preserves the rigidity of the solid at the discrete time levels. A convergence result for this semi-discrete scheme is then given.

Nous présentons un schéma de semi-discrétisation en temps d'une méthode de caractéristiques pour un problème fluide–rigide dans le cas où les densités du fluide et du solide sont différentes. Cette méthode est basée sur une formulation faible globale faisant intervenir uniquement des termes définis sur tout le domaine fluide–rigide. L'idée principale est de construire une fonction caractéristique qui préserve la rigidité du solide d'une itération en temps à l'autre. Le résultat principal porte sur la convergence du schéma semi-discrétisé en temps.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.07.004

Jorge San Martín 1; Jean-François Scheid 2; Loredana Smaranda 3

1 Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and Centro de Modelamiento Matemático, UMR 2071 CNRS-UChile, Casilla 170/3-Correo 3, Santiago, Chile
2 Institut Elie-Cartan UMR 7502, Nancy-Université - CNRS - INRIA, B.P. 239, F-54506 Vandoeuvre-lès-Nancy cedex, France
3 Department of Mathematics, Faculty of Mathematics and Computer Science, University of Piteşti, Str. Târgu din Vale nr. 1, 110040 Piteşti, Romania
@article{CRMATH_2010__348_15-16_935_0,
     author = {Jorge San Mart{\'\i}n and Jean-Fran\c{c}ois Scheid and Loredana Smaranda},
     title = {A time discretization scheme of a characteristics method for a fluid{\textendash}rigid system with discontinuous density},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {935--939},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.004},
     language = {en},
}
TY  - JOUR
AU  - Jorge San Martín
AU  - Jean-François Scheid
AU  - Loredana Smaranda
TI  - A time discretization scheme of a characteristics method for a fluid–rigid system with discontinuous density
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 935
EP  - 939
VL  - 348
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.004
LA  - en
ID  - CRMATH_2010__348_15-16_935_0
ER  - 
%0 Journal Article
%A Jorge San Martín
%A Jean-François Scheid
%A Loredana Smaranda
%T A time discretization scheme of a characteristics method for a fluid–rigid system with discontinuous density
%J Comptes Rendus. Mathématique
%D 2010
%P 935-939
%V 348
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2010.07.004
%G en
%F CRMATH_2010__348_15-16_935_0
Jorge San Martín; Jean-François Scheid; Loredana Smaranda. A time discretization scheme of a characteristics method for a fluid–rigid system with discontinuous density. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 935-939. doi : 10.1016/j.crma.2010.07.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.004/

[1] Ph. Angot; C.H. Bruneau; P. Fabrie A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., Volume 81 (1999), pp. 497-520

[2] C. Bost, Méthodes Level-Set et pénalisation pour le calcul d'interactions fluide–structure, PhD thesis, University of Grenoble, France, 2008.

[3] R. Glowinski; T.-W. Pan; T.I. Hesla; D.D. Joseph; J. Périaux A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., Volume 169 (2001) no. 2, pp. 363-426

[4] O. Pironneau On the transport–diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math., Volume 38 (1982) no. 3, pp. 309-332

[5] J. San Martín, J.-F. Scheid, L. Smaranda, A modified Lagrange–Galerkin method for a fluid–rigid system with discontinuous density, submitted for publication.

[6] J. San Martín; J.-F. Scheid; T. Takahashi; M. Tucsnak Convergence of the Lagrange–Galerkin method for a fluid–rigid system, C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 1, pp. 59-64

[7] J. San Martín; J.-F. Scheid; T. Takahashi; M. Tucsnak Convergence of the Lagrange–Galerkin method for the equations modelling the motion of a fluid–rigid system, SIAM J. Numer. Anal., Volume 43 (2005) no. 4, pp. 1536-1571 (electronic)

[8] E. Süli Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations, Numer. Math., Volume 53 (1988) no. 4, pp. 459-483

Cited by Sources:

Comments - Policy