The energy which is minimized in branched transport problems among singular 1-dimensional rectifiable vector measures with prescribed divergence is approximated by means of a sequence of elliptic energies, defined on more regular vector fields. The procedure recalls that of Modica–Mortola to approximate the perimeter, and the double-well potential is replaced by a concave power.
L'énergie qui est minimisée dans les problèmes de transport branché parmi les mesures vectorielles (singulières et supportées sur des ensembles rectifiables de dimension 1) à divergence fixée est approximée par une suite d'énergies elliptiques, définies sur des champs de vecteurs plus réguliers. La procédure rappelle celle de Modica et Mortola pour le périmètre, et le potentiel à double puits est remplacé par une puissance concave.
Accepted:
Published online:
Filippo Santambrogio 1
@article{CRMATH_2010__348_15-16_941_0, author = {Filippo Santambrogio}, title = {A {Modica{\textendash}Mortola} approximation for branched transport}, journal = {Comptes Rendus. Math\'ematique}, pages = {941--945}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.016}, language = {en}, }
Filippo Santambrogio. A Modica–Mortola approximation for branched transport. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 941-945. doi : 10.1016/j.crma.2010.07.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.016/
[1] A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. ANU, Volume 12 (1987), pp. 1-16
[2] Optimal Transportation Networks, Models and Theory, Lecture Notes in Math., vol. 1955, Springer, 2008
[3] Ginzburg–Landau Vortices, Birkhäuser, 1994
[4] Transitions de phases avec un potentiel dégénéré à l'infini, application à l'équilibre de petites gouttes, C. R. Acad. Sci., Sér. I, Volume 323 (1996), pp. 1103-1108
[5] Approximation of Free-Discontinuity Problems, Lecture Notes in Math., vol. 1694, Springer-Verlag, Berlin, 1998
[6] An Introduction to Γ-Convergence, Birkhäuser, Basel, 1992
[7] Su un tipo di convergenza variazionale, Atti Acc. Naz. Lincei Rend., Volume 58 (1975) no. 8, pp. 842-850
[8] Un esempio di Γ-convergenza, Boll. Unione Mat. Ital. Sez. B, Volume 14 (1977) no. 1, pp. 285-299 (in Italian)
[9] Comparison of distances between measures, Appl. Math. Lett., Volume 20 (2007) no. 4, pp. 427-432
[10] E. Oudet, F. Santambrogio, A Modica–Mortola approximation for branched transport and applications, in preparation.
[11] http://cvgmt.sns.it/papers/san09/ (manuscript available at)
[12] Optimal paths related to transport problems, Commun. Contemp. Math., Volume 5 (2003) no. 2, pp. 251-279
Cited by Sources:
Comments - Policy