Comptes Rendus
Algebra/Group Theory
Steinberg groups for Jordan pairs
[Groupes de Steinberg pour les paires de Jordan]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 839-842.

Nous annonçons les résultats suivants relatifs aux groupes élémentaires projectifs et aux groupes de Steinberg associés aux paires de Jordan V munies d'une graduation par un système de racines Φ localement fini : Le groupe élémentaire projectif PE(V) est un groupe avec des relations de commutateurs de type Φ par rapport à certains sous-groupes radiciels. Sous des conditions additionnelles faibles, le groupe de Steinberg associé à PE(V) couvre de manière unique chaque extension centrale de PE(V) et il est l'extension centrale universelle de PE(V) si Φ est irréductible et de rang infini.

We announce results on projective elementary groups and on Steinberg groups associated to Jordan pairs V with a grading by a locally finite 3-graded root system Φ: The projective elementary group PE(V) of V is a group with Φ-commutator relations with respect to appropriately defined root subgroups. Under some mild additional conditions, the Steinberg group associated to PE(V) uniquely covers all central extensions of PE(V) and is the universal central extension of PE(V) if Φ is irreducible and has infinite rank.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.012

Ottmar Loos 1 ; Erhard Neher 2

1 Fakultät für Mathematik und Informatik, FernUniversität in Hagen, 58097 Hagen, Germany
2 Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
@article{CRMATH_2010__348_15-16_839_0,
     author = {Ottmar Loos and Erhard Neher},
     title = {Steinberg groups for {Jordan} pairs},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {839--842},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.012},
     language = {en},
}
TY  - JOUR
AU  - Ottmar Loos
AU  - Erhard Neher
TI  - Steinberg groups for Jordan pairs
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 839
EP  - 842
VL  - 348
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.012
LA  - en
ID  - CRMATH_2010__348_15-16_839_0
ER  - 
%0 Journal Article
%A Ottmar Loos
%A Erhard Neher
%T Steinberg groups for Jordan pairs
%J Comptes Rendus. Mathématique
%D 2010
%P 839-842
%V 348
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2010.07.012
%G en
%F CRMATH_2010__348_15-16_839_0
Ottmar Loos; Erhard Neher. Steinberg groups for Jordan pairs. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 839-842. doi : 10.1016/j.crma.2010.07.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.012/

[1] N. Bourbaki Groupes et algèbres de Lie, Masson, Paris, 1981 (Chapitres 4–6)

[2] J.R. Faulkner Groups with Steinberg Relations and Coordinatization of Polygonal Geometries, Memoirs, vol. 185, Amer. Math. Soc., 1977

[3] J.R. Faulkner Stable range and linear groups for alternative rings, Geom. Dedicata, Volume 14 (1983), pp. 177-188

[4] A.J. Hahn; O.T. O'Meara The Classical Groups and K-Theory, Grundlehren, vol. 291, Springer-Verlag, 1989

[5] M. Koecher An Elementary Approach to Bounded Symmetric Domains, Rice University, Houston, TX, 1969

[6] O. Loos Jordan Pairs, Lecture Notes in Mathematics, vol. 460, Springer-Verlag, Berlin, 1975

[7] O. Loos On algebraic groups defined by Jordan pairs, Nagoya Math. J., Volume 74 (1979), pp. 23-66

[8] O. Loos Elementary groups and stability for Jordan pairs, K-Theory, Volume 9 (1994), pp. 77-116

[9] O. Loos Steinberg groups and simplicity of elementary groups defined by Jordan pairs, J. Algebra, Volume 186 (1996) no. 1, pp. 207-234

[10] O. Loos; E. Neher Locally finite root systems, Mem. Amer. Math. Soc., Volume 171 (2004) no. 811, p. x+214

[11] E. Neher Systèmes de racines 3-gradués, C. R. Acad. Sci. Paris, Ser. I, Volume 310 (1990), pp. 687-690

[12] J. Tits Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra, Volume 105 (1987), pp. 542-573

Cité par Sources :

Commentaires - Politique