Nous annonçons la simplicité des réseaux de Kac–Moody non affines (modulo leur centre). Les groupes en question sont des groupes de Kac–Moody minimaux, définis par Jacques Tits au moyen d'une présentation « à la Steinberg ». Le corps de base est fini, supposé de cardinal supérieur au rang des immeubles sur lesquels ces groupes opèrent naturellement. Nous travaillons dans le contexte combinatoire général des données radicielles jumelées.
We announce the simplicity of non-affine Kac–Moody lattices (modulo center). The groups under consideration are minimal Kac–Moody groups. They were defined by Jacques Tits by means of a presentation à la Steinberg. The ground field is finite, assumed to be of cardinality greater than the rank of the buildings these groups naturally act upon. We work in the general combinatorial context of twin root data.
Publié le :
Pierre-Emmanuel Caprace 1 ; Bertrand Rémy 2
@article{CRMATH_2006__342_8_539_0, author = {Pierre-Emmanuel Caprace and Bertrand R\'emy}, title = {Simplicit\'e abstraite des groupes de {Kac{\textendash}Moody} non affines}, journal = {Comptes Rendus. Math\'ematique}, pages = {539--544}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.02.029}, language = {fr}, }
Pierre-Emmanuel Caprace; Bertrand Rémy. Simplicité abstraite des groupes de Kac–Moody non affines. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 539-544. doi : 10.1016/j.crma.2006.02.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.029/
[1] Factor and normal subgroup theorems for lattices in products of groups, Invent. Math., Volume 163 (2006), pp. 415-454
[2] Lattices in product of trees, Publ. Math. IHÉS, Volume 92 (2001), pp. 151-194
[3] Discrete Subgroups of Semisimple Lie Groups, Springer, 1991
[4] Some linear groups virtually having a free quotient, J. Lie Theory, Volume 10 (2000), pp. 171-180
[5] R.V. Moody, A simplicity theorem for Chevalley groups defined by generalized Cartan matrices, Preprint, 1982
[6] Strong Tits alternative for subgroups of Coxeter groups, J. Lie Theory, Volume 12 (2002), pp. 259-264
[7] Construction de réseaux en théorie de Kac–Moody, C. R. Acad. Sci. Paris, Sér. A, Volume 329 (1999), pp. 475-478
[8] Topological simplicity, commensurator super-rigidity and non-linearities of Kac–Moody groups. With an appendix by P. Bonvin, Geom. Funct. Anal., Volume 14 (2004), pp. 810-852
[9] Integrability of induction cocycles for Kac–Moody groups, Math. Ann., Volume 333 (2005), pp. 29-43
[10] Rigidity of commensurators and irreducible lattices, Invent. Math., Volume 141 (2000), pp. 1-54
[11] Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra, Volume 105 (1987), pp. 542-573
[12] Groupes associés aux algèbres de Kac–Moody, Séminaire Bourbaki, exposé 700, Astérisque, vols. 177–178, 1989, pp. 7-31
[13] Twin buildings and groups of Kac–Moody type, London Math. Soc. Lecture Note Ser., vol. 165, 1992, pp. 249-286
Cité par Sources :
Commentaires - Politique