Comptes Rendus
Differential Geometry/Differential Topology
The Witten deformation for even dimensional spaces with cone-like singularities and admissible Morse functions
Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 915-918.

In this Note we generalise the Witten deformation to even dimensional Riemannian manifolds with cone-like singularities X and certain functions f, which we call admissible Morse functions. As a corollary we get Morse inequalities for the L2-Betti numbers of X. The contribution of a singular point p of X to the Morse inequalities can be expressed in terms of the intersection cohomology of the local Morse datum of f at p. The definition of the class of functions which we study here is inspired by stratified Morse theory as developed by Goresky and MacPherson. However the setting here is different since the spaces considered here are manifolds with cone-like singularities instead of Whitney stratified spaces.

Le but de cette Note est d'étendre la déformation de Witten au cas d'un espace singulier X de dimension paire à singularités coniques, muni de fonctions appelées fonctions de Morse admissibles. Comme conséquence on obtient des inégalités de Morse pour les nombres de Betti L2 de X. La contribution d'un point singulier p de X aux inégalités de Morse s'exprime en fonction de la cohomologie d'intersection des données de Morse local. La définition des fonctions de Morse admissibles est inspirée par la théorie de Morse stratifiée de Goresky et MacPherson. Mais ici on travaille sur des espaces singuliers à singularités coniques au lieu d'espaces munis d'une stratification de Whitney.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.07.020

Ursula Ludwig 1

1 Mathematisches Institut, Eckerstrasse 1, 79104 Freiburg, Germany
@article{CRMATH_2010__348_15-16_915_0,
     author = {Ursula Ludwig},
     title = {The {Witten} deformation for even dimensional spaces with cone-like singularities and admissible {Morse} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {915--918},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.020},
     language = {en},
}
TY  - JOUR
AU  - Ursula Ludwig
TI  - The Witten deformation for even dimensional spaces with cone-like singularities and admissible Morse functions
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 915
EP  - 918
VL  - 348
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.020
LA  - en
ID  - CRMATH_2010__348_15-16_915_0
ER  - 
%0 Journal Article
%A Ursula Ludwig
%T The Witten deformation for even dimensional spaces with cone-like singularities and admissible Morse functions
%J Comptes Rendus. Mathématique
%D 2010
%P 915-918
%V 348
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2010.07.020
%G en
%F CRMATH_2010__348_15-16_915_0
Ursula Ludwig. The Witten deformation for even dimensional spaces with cone-like singularities and admissible Morse functions. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 915-918. doi : 10.1016/j.crma.2010.07.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.020/

[1] J.-M. Bismut; G. Lebeau Complex immersions and Quillen metrics, Publ. Math. Inst. Hautes Etudes Sci., Volume 74 (1991), pp. 1-297

[2] M. Braverman; V. Silantyev Kirwan–Novikov inequalities on a manifold with boundary, Trans. Amer. Math. Soc., Volume 358 (2006) no. 8, pp. 3329-3361

[3] J. Brüning; M. Lesch Hilbert complexes, J. Funct. Anal., Volume 108 (1992) no. 1, pp. 88-132

[4] J. Brüning; M. Lesch Kähler–Hodge theory for conformal complex cones, Geom. Funct. Anal., Volume 3 (1993) no. 5, pp. 439-473

[5] J. Brüning; M. Lesch On the spectral geometry of algebraic curves, J. Reine Angew. Math., Volume 474 (1996), pp. 25-66

[6] M. Farber; E. Shustin Witten deformation and polynomial differential forms, Geom. Dedicata, Volume 80 (2000) no. 1–3, pp. 125-155

[7] M. Goresky; R. MacPherson Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Results in Mathematics and Related Areas (3), vol. 14, Springer-Verlag, Berlin, 1988

[8] B. Helffer; J. Sjöstrand Puits multiples en mécanique semi-classique. IV : Étude du complexe de Witten, Comm. Partial Differential Equations, Volume 10 (1985) no. 3, pp. 245-340

[9] B. Helffer Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, vol. 1336, Springer-Verlag, 1988

[10] U. Ludwig, The Witten complex for singular spaces of dimension two with cone-like singularities, Math. Nachr., in press.

[11] E. Witten Supersymmetry and Morse theory, J. Differential Geom., Volume 17 (1982) no. 4, pp. 661-692

Cited by Sources:

Comments - Policy