[Décomposabilité motivique des variétés de Severi–Brauer généralisées]
Soient F un corps arbitraire, p un nombre premier positif et D une F-algèbre de division de degré . On écrit pour la variété de Severi–Brauer généralisée des idéaux à droite de dimension réduite , . On note par le motif de Chow à coefficients dans de la variété . Il a été demontré par Nikita Karpenko que ce motif est indecomposable pour tout nombre premier p arbitraire et et pour , . Nous montrons la décomposabilité de dans tous les autres cas.
Let F be an arbitrary field. Let p be a positive prime number and D a central division F-algebra of degree , with . We write for the generalized Severi–Brauer variety of right ideals in D of reduced dimension for . We note by the Chow motive with coefficients in of the variety . It was proven by Nikita Karpenko that this motive is indecomposable for any prime p and and for , . We prove decomposability of in all the other cases.
Accepté le :
Publié le :
Maksim Zhykhovich 1
@article{CRMATH_2010__348_17-18_989_0, author = {Maksim Zhykhovich}, title = {Motivic decomposability of generalized {Severi{\textendash}Brauer} varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {989--992}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.07.022}, language = {en}, }
Maksim Zhykhovich. Motivic decomposability of generalized Severi–Brauer varieties. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 989-992. doi : 10.1016/j.crma.2010.07.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.022/
[1] Chow motives of twisted flag varieties, Compos. Math., Volume 142 (2006) no. 4, pp. 1063-1080
[2] Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Transform. Groups, Volume 11 (2006) no. 3, pp. 371-386
[3] The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008
[4] Intersection Theory, Springer, Berlin, 1998
[5] Some new examples in the theory of quadratic forms, Math. Z., Volume 234 (2000), pp. 647-695
[6] Grothendieck chow motives of Severi–Brauer varieties, Algebra i Analiz, Volume 7 (1995) no. 4, pp. 196-213
[7] Cohomology of relative cellular spaces and of isotropic flag varieties, Algebra i Analiz, Volume 12 (2000) no. 1, pp. 3-69
[8] Upper motives of algebraic groups and incompressibility of Severi–Brauer varieties, Linear Algebraic Groups and Related Structures (preprint server), Volume 333 (2009, Apr. 2)
[9] J-invariant of linear algebraic groups, Ann. Sci. École Norm. Sup. (4), Volume 41 (2008), pp. 1023-1053
Cité par Sources :
Commentaires - Politique