[Classification des motifs supérieurs des groupes algébriques intérieurs de type ]
Soient A, deux algèbres centrales simples sur un corps F et un corps fini de caractéristique p. Nous prouvons que les facteurs directs indécomposables supérieurs des motifs de deux variétés anisotropes de drapeaux dʼidéaux à droite et à coefficients dans sont isomorphes si et seulement si les valuations p-adiques de et sont égales et les classes des composantes p-primaires et de A et engendrent le même sous-groupe dans le groupe de Brauer de F. Ce résultat mène à une surprenante dichotomie entre les motifs supérieurs des groupes algébriques absolument simples, adjoints et intérieurs de type .
Let A, be two central simple algebras over a field F and be a finite field of characteristic p. We prove that the upper indecomposable direct summands of the motives of two anisotropic varieties of flags of right ideals and with coefficients in are isomorphic if and only if the p-adic valuations of and are equal and the classes of the p-primary components and of A and generate the same group in the Brauer group of F. This result leads to a surprising dichotomy between upper motives of absolutely simple adjoint algebraic groups of inner type .
Accepté le :
Publié le :
Charles De Clercq 1
@article{CRMATH_2011__349_7-8_433_0, author = {Charles De Clercq}, title = {Classification of upper motives of algebraic groups of inner type $ {A}_{n}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {433--436}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.02.020}, language = {en}, }
Charles De Clercq. Classification of upper motives of algebraic groups of inner type $ {A}_{n}$. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 433-436. doi : 10.1016/j.crma.2011.02.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.020/
[1] Generic splitting fields of central simple algebras, Ann. of Math., Volume 62 (1955), pp. 8-43
[2] Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, vol. 17, Société Mathématique de France, 2004
[3] Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem, Transform. Groups, Volume 11 (2006), pp. 371-386
[4] Motivic decompositions of projective homogeneous varieties and change of coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 17–18, pp. 955-958
[5] The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society, Providence, 2008
[6] N. Karpenko, Canonical dimension, in: Proceedings of the ICM 2010, vol. II, pp. 146–161.
[7] On the first Witt index of quadratic forms, Invent. Math., Volume 153 (2003) no. 2, pp. 455-462
[8] N. Karpenko, Upper motives of algebraic groups and incompressibility of Severi–Brauer varieties, Linear Algebraic Groups and Related Structures (preprint server) 333, 2009.
[9] The Book of Involutions, AMS Colloquium Publications, vol. 44, American Mathematical Society, 1998
[10] Index reduction formulas for twisted flag varieties, I, J. K-Theory, Volume 10 (1996), pp. 517-596
[11] V. Petrov, N. Semenov, Higher Tits indices of algebraic groups, preprint, 2007.
[12] J-invariant of linear algebraic groups, Ann. Sci. École Norm. Sup., Volume 41 (2008), pp. 1023-1053
[13] A. Vishik, Motives of quadrics with applications to the theory of quadratic forms, in: Proceedings of the Summer School “Geometric Methods in the Algebraic Theory of Quadratic Forms, Lens, 2000”, in: Lect. Notes in Math., vol. 1835, 2004, pp. 25–101.
[14] A. Vishik, Excellent connections in the motives of quadrics, Annales Scientifiques de LʼENS, 2010, in press.
[15] Fields of u-invariant , Algebra, Arithmetic and Geometry – In Honor of Yu.I. Manin, Birkhäuser, 2010, pp. 661-685
[16] Algebraic cobordism of a Pfister quadric, J. Lond. Math. Soc. (2), Volume 76 (2007) no. 3, pp. 586-604
Cité par Sources :
Commentaires - Politique