[Géométrie commune des substitutions Pisot de même matrice d'incidence]
À toute substitution Pisot, on sait associer, par projection de la ligne brisée associée à un point fixe infini de la substitution, un ensemble borné aux propriétés intéressantes, appelé fractal de Rauzy. Deux substitutions ayant la même matrice d'incidence peuvent avoir des fractals de Rauzy très différents. Nous montrons que, sous des conditions faibles, l'intersection de ces deux fractals est de mesure non nulle, et peut aussi être engendrée par une substitution.
Any Pisot substitution can be associated with a bounded set with interesting properties, called the Rauzy fractal. This set is obtained by projection of the broken line associated with an infinite fixed point. Two substitutions having the same incidence matrix can have different Rauzy fractals. We show that under weak conditions, the intersection of these two fractals has strictly positive measure, and can also be generated by a substitution.
Accepté le :
Publié le :
Tarek Sellami 1, 2
@article{CRMATH_2010__348_17-18_1005_0, author = {Tarek Sellami}, title = {Geometry of the common dynamics of {Pisot} substitutions with the same incidence matrix}, journal = {Comptes Rendus. Math\'ematique}, pages = {1005--1008}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.07.030}, language = {en}, }
Tarek Sellami. Geometry of the common dynamics of Pisot substitutions with the same incidence matrix. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1005-1008. doi : 10.1016/j.crma.2010.07.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.030/
[1] P. Arnoux, J. Bernat, X. Bressaud, Geometrical model for substitutions, Exp. Math., in press.
[2] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001), pp. 181-207
[3] Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc., Volume 353 (2001) no. 12, pp. 5121-5144
[4] Modified Jacobi–Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., Volume 16 (1993), pp. 441-472
[5] Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982), pp. 147-178
[6] A. Siegel, Jorg M. Thuswaldner, Topological properties of Rauzy fractal, Mémoires de la SMF, in press.
[7] Geometry of the common dynamics of flipped Pisot substitution, Monatsh. Math., Volume 155 (2008), pp. 431-448
Cité par Sources :
Commentaires - Politique