Comptes Rendus
Algebraic Geometry
The Nash problem for a toric pair and the minimal log-discrepancy
[Problème de Nash pour une paire torique et la log-discrépance minimale]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 985-988.

Dans cette Note, nous formulons le problème de Nash pour une paire constituée d'une variété torique et d'un idéal invariant. Nous montrons que le problème admet une réponse positive. Nous montrons aussi que la log-discrépance minimale, si elle est finie, est calculée par un diviseur correspondant à une composante de Nash. D'autre part, si la log-discrépance minimale est −∞, alors il existe une composante de Nash dont le diviseur correspondant est de log-discrépance négative.

This Note formulates the Nash problem for a pair consisting of a toric variety and an invariant ideal and gives an affirmative answer to the problem. We also prove that the minimal log-discrepancy is computed by a divisor corresponding to a Nash component, if the minimal log-discrepancy is finite. On the other hand there exists a Nash component such that the corresponding divisor has negative log-discrepancy, if the minimal log-discrepancy is −∞.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.034

Shihoko Ishii 1

1 Department of Mathematics, Tokyo Institute of Technology, Oh-Okayama, Meguro, 152-8551 Tokyo, Japan
@article{CRMATH_2010__348_17-18_985_0,
     author = {Shihoko Ishii},
     title = {The {Nash} problem for a toric pair and the minimal log-discrepancy},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {985--988},
     publisher = {Elsevier},
     volume = {348},
     number = {17-18},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.034},
     language = {en},
}
TY  - JOUR
AU  - Shihoko Ishii
TI  - The Nash problem for a toric pair and the minimal log-discrepancy
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 985
EP  - 988
VL  - 348
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.034
LA  - en
ID  - CRMATH_2010__348_17-18_985_0
ER  - 
%0 Journal Article
%A Shihoko Ishii
%T The Nash problem for a toric pair and the minimal log-discrepancy
%J Comptes Rendus. Mathématique
%D 2010
%P 985-988
%V 348
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2010.07.034
%G en
%F CRMATH_2010__348_17-18_985_0
Shihoko Ishii. The Nash problem for a toric pair and the minimal log-discrepancy. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 985-988. doi : 10.1016/j.crma.2010.07.034. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.034/

[1] W. Fulton Introduction to Toric Varieties, Annals of Math. Studies, vol. 131, Princeton Univ. Press, 1993

[2] P.D. González Péres Bijectiveness of the Nash map for quasi-ordinary hypersurface singularities, Int. Math. Res. Not., Volume 2007 (2007) (13 pp) | DOI

[3] S. Ishii Arcs, valuations and the Nash map, J. Reine Angew. Math., Volume 588 (2005), pp. 71-92

[4] S. Ishii The local Nash problem on arc families of singularities, Ann. Inst. Fourier (Grenoble), Volume 56 (2006), pp. 1207-1224

[5] S. Ishii Jet schemes, arc spaces and the Nash map, C. R. Math. Rep. Acad. Sci. Canada, Volume 29 (2007) no. 1, pp. 1-21

[6] S. Ishii; J. Kollár The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003) no. 3, pp. 601-620

[7] M. Lejeune-Jalabert; A.J. Reguera-Lopez Arcs and wedges on sandwiched surface singularities, Amer. J. Math., Volume 121 (1999), pp. 1191-1213

[8] M. Lejeune-Jalabert, A.J. Reguera-Lopez, Exceptional divisors which are not uniruled belong to the image of the Nash map, preprint, 2008, . | arXiv

[9] J.F. Nash Arc structure of singularities, Duke Math. J., Volume 81 (1995), pp. 31-38

[10] P. Petrov Nash problem for stable toric varieties, Math. Nachr., Volume 282 (2009), pp. 1575-1583

Cité par Sources :

Commentaires - Politique