[Problème de Nash pour une paire torique et la log-discrépance minimale]
Dans cette Note, nous formulons le problème de Nash pour une paire constituée d'une variété torique et d'un idéal invariant. Nous montrons que le problème admet une réponse positive. Nous montrons aussi que la log-discrépance minimale, si elle est finie, est calculée par un diviseur correspondant à une composante de Nash. D'autre part, si la log-discrépance minimale est −∞, alors il existe une composante de Nash dont le diviseur correspondant est de log-discrépance négative.
This Note formulates the Nash problem for a pair consisting of a toric variety and an invariant ideal and gives an affirmative answer to the problem. We also prove that the minimal log-discrepancy is computed by a divisor corresponding to a Nash component, if the minimal log-discrepancy is finite. On the other hand there exists a Nash component such that the corresponding divisor has negative log-discrepancy, if the minimal log-discrepancy is −∞.
Accepté le :
Publié le :
Shihoko Ishii 1
@article{CRMATH_2010__348_17-18_985_0, author = {Shihoko Ishii}, title = {The {Nash} problem for a toric pair and the minimal log-discrepancy}, journal = {Comptes Rendus. Math\'ematique}, pages = {985--988}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.07.034}, language = {en}, }
Shihoko Ishii. The Nash problem for a toric pair and the minimal log-discrepancy. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 985-988. doi : 10.1016/j.crma.2010.07.034. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.034/
[1] Introduction to Toric Varieties, Annals of Math. Studies, vol. 131, Princeton Univ. Press, 1993
[2] Bijectiveness of the Nash map for quasi-ordinary hypersurface singularities, Int. Math. Res. Not., Volume 2007 (2007) (13 pp) | DOI
[3] Arcs, valuations and the Nash map, J. Reine Angew. Math., Volume 588 (2005), pp. 71-92
[4] The local Nash problem on arc families of singularities, Ann. Inst. Fourier (Grenoble), Volume 56 (2006), pp. 1207-1224
[5] Jet schemes, arc spaces and the Nash map, C. R. Math. Rep. Acad. Sci. Canada, Volume 29 (2007) no. 1, pp. 1-21
[6] The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003) no. 3, pp. 601-620
[7] Arcs and wedges on sandwiched surface singularities, Amer. J. Math., Volume 121 (1999), pp. 1191-1213
[8] M. Lejeune-Jalabert, A.J. Reguera-Lopez, Exceptional divisors which are not uniruled belong to the image of the Nash map, preprint, 2008, . | arXiv
[9] Arc structure of singularities, Duke Math. J., Volume 81 (1995), pp. 31-38
[10] Nash problem for stable toric varieties, Math. Nachr., Volume 282 (2009), pp. 1575-1583
Cité par Sources :
Commentaires - Politique