Comptes Rendus
Article de recherche - Géométrie algébrique
Families of jets of arc type and higher (co)dimensional Du Val singularities
[Familles de jets de type arc et singularités de Du Val de (co)dimension supérieure]
Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 119-139.

Les familles de jets à travers les singularités des variétés algébriques sont étudiées ici en relation avec les familles d’arcs initialement étudiées par Nash. Après avoir démontré un résultat général les concernant, nous examinons les variétés d’intersection localement complètes normales avec des singularités rationnelles et nous concentrons sur une classe de singularités que nous appelons « singularités de Du Val supérieures » , une version de dimension (et codimension) supérieure des singularités de Du Val étroitement liée aux singularités d’Arnold. Plus généralement, nous introduisons la notion de « singularités de Du Val composées supérieures » , dont la définition est parallèle à celle des singularités de Du Val composées. Pour de telles singularités, nous démontrons qu’il existe une correspondance bijective entre les familles d’arcs et les familles de jets d’ordre suffisamment élevé à travers les singularités. En dimension deux, le résultat récupère partiellement un théorème de Mourtada sur les schémas de jets des singularités de Du Val. En tant qu’application, nous proposons une solution au problème de Nash pour les singularités de Du Val supérieures.

Families of jets through singularities of algebraic varieties are here studied in relation to the families of arcs originally studied by Nash. After proving a general result relating them, we look at normal locally complete intersection varieties with rational singularities and focus on a class of singularities we call higher Du Val singularities, a higher dimensional (and codimensional) version of Du Val singularities that is closely related to Arnold singularities. More generally, we introduce the notion of higher compound Du Val singularities, whose definition parallels that of compound Du Val singularities. For such singularities, we prove that there exists a one-to-one correspondence between families of arcs and families of jets of sufficiently high order through the singularities. In dimension two, the result partially recovers a theorem of Mourtada on the jet schemes of Du Val singularities. As an application, we give a solution of the Nash problem for higher Du Val singularities.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.614
Classification : 14E18, 14B05
Keywords: Jet scheme, arc space, Nash problem, rational singularity
Mot clés : Schémas de jet, espace d’arc, problème de Nash, singularité rationnelle

Tommaso de Fernex 1 ; Shih-Hsin Wang 1

1 Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_S1_119_0,
     author = {Tommaso de Fernex and Shih-Hsin Wang},
     title = {Families of jets of arc type and higher (co)dimensional {Du} {Val} singularities},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {119--139},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {S1},
     year = {2024},
     doi = {10.5802/crmath.614},
     language = {en},
}
TY  - JOUR
AU  - Tommaso de Fernex
AU  - Shih-Hsin Wang
TI  - Families of jets of arc type and higher (co)dimensional Du Val singularities
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 119
EP  - 139
VL  - 362
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.614
LA  - en
ID  - CRMATH_2024__362_S1_119_0
ER  - 
%0 Journal Article
%A Tommaso de Fernex
%A Shih-Hsin Wang
%T Families of jets of arc type and higher (co)dimensional Du Val singularities
%J Comptes Rendus. Mathématique
%D 2024
%P 119-139
%V 362
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmath.614
%G en
%F CRMATH_2024__362_S1_119_0
Tommaso de Fernex; Shih-Hsin Wang. Families of jets of arc type and higher (co)dimensional Du Val singularities. Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 119-139. doi : 10.5802/crmath.614. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.614/

[1] Vladimir I. Arnold Normal forms of functions near degenerate critical points, the Weyl groups A k ,D k ,E k and Lagrangian singularities, Funkts. Anal. Prilozh., Volume 6 (1972) no. 4, pp. 3-25 | MR | Zbl

[2] Caucher Birkar; Paolo Cascini; Christopher D. Hacon; James McKernan Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl

[3] Nero Budur; Javier de la Bodega; Eduardo de Lorenzo Poza; Javier Fernández de Bobadilla; Tomasz Pełka On the embedded Nash problem (2022) | arXiv

[4] Daniel Burns On rational singularities in dimensions >2, Math. Ann., Volume 211 (1974), pp. 237-244 | DOI | MR | Zbl

[5] Helena Cobo; Hussein Mourtada Jet schemes of quasi-ordinary surface singularities, Nagoya Math. J., Volume 242 (2021), pp. 77-164 | DOI | MR | Zbl

[6] Christopher Chiu; Tommaso de Fernex; Roi Docampo Embedding codimension of the space of arcs, Forum Math. Pi, Volume 10 (2022), e4, 37 pages | DOI | MR | Zbl

[7] Lawrence Ein; Robert Lazarsfeld; Mircea Mustaţǎ Contact loci in arc spaces, Compos. Math., Volume 140 (2004) no. 5, pp. 1229-1244 | DOI | MR | Zbl

[8] Lawrence Ein; Mircea Mustaţǎ Inversion of adjunction for local complete intersection varieties, Am. J. Math., Volume 126 (2004) no. 6, pp. 1355-1365 | MR | Zbl

[9] Lawrence Ein; Mircea Mustaţǎ Jet schemes and singularities, Algebraic Geometry (Seattle, 2005). Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 80, American Mathematical Society, 2009, pp. 505-546 | DOI | MR | Zbl

[10] Javier Fernández de Bobadilla; María Pe Pereira The Nash problem for surfaces, Ann. Math., Volume 176 (2012) no. 3, pp. 2003-2029 | DOI | MR | Zbl

[11] Javier Fernández de Bobadilla; María Pe Pereira; Patrick Popescu-Pampu On the generalized Nash problem for smooth germs and adjacencies of curve singularities, Adv. Math., Volume 320 (2017), pp. 1269-1317 | DOI | MR | Zbl

[12] Marvin J. Greenberg Rational points in Henselian discrete valuation rings, Publ. Math., Inst. Hautes Étud. Sci. (1966) no. 31, pp. 59-64 | DOI | Numdam | MR

[13] Alexander Grothendieck Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I., Publ. Math., Inst. Hautes Étud. Sci. (1961) no. 11, pp. 1-167 | MR

[14] J. A. Howald Multiplier ideals of monomial ideals, Trans. Am. Math. Soc., Volume 353 (2001) no. 7, pp. 2665-2671 | DOI | MR | Zbl

[15] Shihoko Ishii; János Kollár The Nash problem on arc families of singularities, Duke Math. J., Volume 120 (2003) no. 3, pp. 601-620 | DOI | MR | Zbl

[16] Shihoko Ishii Maximal divisorial sets in arc spaces, Algebraic Geometry in East Asia (Hanoi, 2005) (Advanced Studies in Pure Mathematics), Volume 50, Mathematical Society of Japan, 2008, pp. 237-249 | DOI | MR | Zbl

[17] Jennifer M. Johnson; János Kollár Arc spaces of cA-type singularities, J. Singul., Volume 7 (2013), pp. 238-252 | DOI | MR | Zbl

[18] Ellis R. Kolchin Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973, xviii+446 pages | MR

[19] János Kollár Singularities of pairs, Algebraic Geometry (Santa Cruz, 1995) (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-287 | DOI | MR | Zbl

[20] Yoshimune Koreeda On the configuration of the singular fibers of jet schemes of rational double points, Commun. Algebra, Volume 50 (2022) no. 4, pp. 1802-1820 | DOI | MR | Zbl

[21] Christer Lech Inequalities related to certain couples of local rings, Acta Math., Volume 112 (1964), pp. 69-89 | DOI | MR | Zbl

[22] Monique Lejeune-Jalabert; Hussein Mourtada; Ana Reguera Jet schemes and minimal embedded desingularization of plane branches, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 107 (2013) no. 1, pp. 145-157 | DOI | MR | Zbl

[23] Eduard Looijenga Motivic measures, Séminaire Bourbaki, Vol. 1999/2000 (Astérisque), Volume 276, Société Mathématique de France, 2002, pp. 267-297 | Numdam | MR | Zbl

[24] Dimitri Markushevich Minimal discrepancy for a terminal cDV singularity is 1, J. Math. Sci., Tokyo, Volume 3 (1996) no. 2, pp. 445-456 | MR | Zbl

[25] Hideyuki Matsumura Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (translated from the Japanese by M. Reid) | MR

[26] Hussein Mourtada Jet schemes of complex plane branches and equisingularity, Ann. Inst. Fourier, Volume 61 (2011) no. 6, pp. 2313-2336 | DOI | Numdam | MR | Zbl

[27] Hussein Mourtada Jet schemes of toric surfaces, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 9-10, pp. 563-566 | DOI | Numdam | MR | Zbl

[28] Hussein Mourtada Jet schemes of rational double point singularities, Valuation Theory in Interaction (EMS Series of Congress Reports), European Mathematical Society, 2014, pp. 373-388 | DOI | MR | Zbl

[29] Hussein Mourtada Jet schemes of normal toric surfaces, Bull. Soc. Math. Fr., Volume 145 (2017) no. 2, pp. 237-266 | DOI | MR | Zbl

[30] Hussein Mourtada; Camille Plénat Jet schemes and minimal toric embedded resolutions of rational double point singularities, Commun. Algebra, Volume 46 (2018) no. 3, pp. 1314-1332 | DOI | MR | Zbl

[31] Mircea Mustaţǎ Jet schemes of locally complete intersection canonical singularities, Invent. Math., Volume 145 (2001) no. 3, pp. 397-424 (with an appendix by David Eisenbud and Edward Frenkel) | DOI | MR | Zbl

[32] John F. Nash Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38 (a celebration of John F. Nash, Jr.) | DOI | MR | Zbl

[33] María Pe Pereira Nash problem for quotient surface singularities, J. Lond. Math. Soc., Volume 87 (2013) no. 1, pp. 177-203 | DOI | MR | Zbl

[34] Ana Reguera Arcs and wedges on rational surface singularities, J. Algebra, Volume 366 (2012), pp. 126-164 | DOI | MR | Zbl

[35] Miles Reid Minimal models of canonical 3-folds, Algebraic Warieties and Analytic Varieties (Tokyo, 1981) (Advanced Studies in Pure Mathematics), Volume 1, North-Holland, 1983, pp. 131-180 | DOI | MR | Zbl

[36] Bernard Teissier The hunting of invariants in the geometry of discriminants, Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff, 1977, pp. 565-678 | MR | Zbl

[37] Paul Vojta Jets via Hasse–Schmidt derivations, Diophantine Geometry (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series (Nuova Serie)), Volume 4, Edizioni della Normale, 2007, pp. 335-361 | MR | Zbl

[38] Tommaso de Fernex Three-dimensional counter-examples to the Nash problem, Compos. Math., Volume 149 (2013) no. 9, pp. 1519-1534 | DOI | MR | Zbl

[39] Tommaso de Fernex The space of arcs of an algebraic variety, Algebraic Geometry (Salt Lake City, 2015) (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018 no. 1, pp. 169-197 | DOI | MR | Zbl

[40] Tommaso de Fernex; Roi Docampo Jacobian discrepancies and rational singularities, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 165-199 | DOI | MR | Zbl

[41] Tommaso de Fernex; Roi Docampo Terminal valuations and the Nash problem, Invent. Math., Volume 203 (2016) no. 1, pp. 303-331 | DOI | MR | Zbl

[42] Tommaso de Fernex; Lawrence Ein; Shihoko Ishii Divisorial valuations via arcs, Publ. Res. Inst. Math. Sci., Volume 44 (2008) no. 2, pp. 425-448 | DOI | MR | Zbl

[43] Tommaso de Fernex; Lawrence Ein; Mircea Mustaţǎ Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett., Volume 10 (2003) no. 2-3, pp. 219-236 | DOI | MR | Zbl

[44] The Stacks Project Authors Stacks Project (https://stacks.math.columbia.edu/)

Cité par Sources :

Commentaires - Politique