In [3], Friedlander and Iwaniec (2009) studied the so-called Hyperbolic Prime Number Theorem, which asks for an infinitude of elements such that the norm squared
Dans [3], Friedlander et Iwaniec (2009) ont introduit l'ensemble des nombres premiers qui admettent une représentation
Published online:
Jean Bourgain 1; Alex Kontorovich 1, 2
@article{CRMATH_2010__348_17-18_947_0, author = {Jean Bourgain and Alex Kontorovich}, title = {On a theorem of {Friedlander} and {Iwaniec}}, journal = {Comptes Rendus. Math\'ematique}, pages = {947--950}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.08.004}, language = {en}, }
Jean Bourgain; Alex Kontorovich. On a theorem of Friedlander and Iwaniec. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 947-950. doi : 10.1016/j.crma.2010.08.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.08.004/
[1] Sieving and expanders, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006) no. 3, pp. 155-159
[2] Rational Quadratic Forms, London Mathematical Society Monographs, vol. 13, Academic Press, London–New York–San Francisco, 1978
[3] Hyperbolic prime number theorem, Acta Math., Volume 202 (2009) no. 1, pp. 1-19
[4] Almost-primes represented by quadratic polynomials, Invent. Math., Volume 47 (1978), pp. 171-188
[5] A note on local densities of quadratic forms, Nagoya Math. J., Volume 92 (1983), pp. 145-152
[6] On the two-adic density of representations by quadratic forms, Pacific J. Math., Volume 6 (1956), pp. 753-762
[7] Über die analytische Theorie der quadratischen Formen, Ann. Math. (2), Volume 36 (1935) no. 3, pp. 527-606
[8] An explicit formula for local densities of quadratic forms, J. Number Theory, Volume 72 (1998) no. 2, pp. 309-356
[9] Local densities of 2-adic quadratic forms, J. Number Theory, Volume 108 (2004) no. 2, pp. 287-345
Cited by Sources:
Comments - Policy