[Stabilisation faible semi-globale d'équations de Schrödinger bilinéaires]
Nous considérons une équation de Schrödinger linéaire, sur un domaine borné, avec un contrôle bilinéaire, modélisant une particule quantique dans un champ électrique (la commande). Récemment, Nersesyan a proposé des lois de rétroaction explicites et démontré l'existence d'une suite de temps auxquels les valeurs de la solution du système bouclé convergent faiblement dans vers l'état fondamental. Ici, nous démontrons la convergence de toute la solution, quand . La preuve repose sur des fonctions de Lyapunov et une adaptation du principe d'invariance de LaSalle aux EDP.
We consider a linear Schrödinger equation, on a bounded domain, with bilinear control, representing a quantum particle in an electric field (the control). Recently, Nersesyan proposed explicit feedback laws and proved the existence of a sequence of times for which the values of the solution of the closed loop system converge weakly in to the ground state. Here, we prove the convergence of the whole solution, as . The proof relies on control Lyapunov functions and an adaptation of the LaSalle invariance principle to PDEs.
Accepté le :
Publié le :
Karine Beauchard 1 ; Vahagn Nersesyan 2
@article{CRMATH_2010__348_19-20_1073_0, author = {Karine Beauchard and Vahagn Nersesyan}, title = {Semi-global weak stabilization of bilinear {Schr\"odinger} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1073--1078}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.002}, language = {en}, }
TY - JOUR AU - Karine Beauchard AU - Vahagn Nersesyan TI - Semi-global weak stabilization of bilinear Schrödinger equations JO - Comptes Rendus. Mathématique PY - 2010 SP - 1073 EP - 1078 VL - 348 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2010.09.002 LA - en ID - CRMATH_2010__348_19-20_1073_0 ER -
Karine Beauchard; Vahagn Nersesyan. Semi-global weak stabilization of bilinear Schrödinger equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1073-1078. doi : 10.1016/j.crma.2010.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.002/
[1] Feedback stabilization of distributed semilinear control systems, Appl. Math. Optim., Volume 5 (1979), pp. 169-179
[2] Controllability of a quantum particle in a moving potential well, J. Funct. Anal., Volume 232 (2006), pp. 328-389
[3] Implicit Lyapunov control of finite dimensional Schrödinger equations, Systems Control Lett., Volume 56 (2007) no. 5, pp. 388-395
[4] Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl. (2010) | DOI
[5] Practical stabilization of a quantum particle in a one-dimensional infinite square potential well, SIAM J. Control Optim., Volume 48 (2009) no. 2, pp. 1179-1205
[6] Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, AMS, 2003
[7] Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. IHP Non Linear Anal., Volume 26 (2009) no. 1, pp. 329-349
[8] Stabilization of a rotating body beam without damping, IEEE Trans. Automat. Control, Volume 43 (1998), pp. 608-618
[9] A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, Volume 52 (2007) no. 1, pp. 2-11
[10] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969
[11] Generic controllability properties for the bilinear Schrödinger equation, Comm. Partial Differential Equations, Volume 35 (2010), pp. 685-706
[12] Lyapunov control of a quantum particle in a decaying potential, Ann. IHP Non Linear Anal., Volume 2 (2009), pp. 1743-1765
[13] Lyapunov control of bilinear Schrödinger equations, Automatica, Volume 41 (2005), pp. 1987-1994
[14] Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. IHP Non Linear Anal., Volume 27 (2010) no. 3, pp. 901-915
[15] Growth of Sobolev norms and controllability of the Schrödinger equation, Comm. Math. Phys., Volume 290 (2009) no. 1, pp. 371-387
[16] The squares of the Laplacian–Dirichlet eigenfunctions are generically linearly independent, ESAIM: COCV, Volume 16 (July–September 2010) no. 3, pp. 794-805
Cité par Sources :
Commentaires - Politique