[Stabilisation faible semi-globale d'équations de Schrödinger bilinéaires]
Nous considérons une équation de Schrödinger linéaire, sur un domaine borné, avec un contrôle bilinéaire, modélisant une particule quantique dans un champ électrique (la commande). Récemment, Nersesyan a proposé des lois de rétroaction explicites et démontré l'existence d'une suite de temps
We consider a linear Schrödinger equation, on a bounded domain, with bilinear control, representing a quantum particle in an electric field (the control). Recently, Nersesyan proposed explicit feedback laws and proved the existence of a sequence of times
Accepté le :
Publié le :
Karine Beauchard 1 ; Vahagn Nersesyan 2
@article{CRMATH_2010__348_19-20_1073_0, author = {Karine Beauchard and Vahagn Nersesyan}, title = {Semi-global weak stabilization of bilinear {Schr\"odinger} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1073--1078}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.002}, language = {en}, }
TY - JOUR AU - Karine Beauchard AU - Vahagn Nersesyan TI - Semi-global weak stabilization of bilinear Schrödinger equations JO - Comptes Rendus. Mathématique PY - 2010 SP - 1073 EP - 1078 VL - 348 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2010.09.002 LA - en ID - CRMATH_2010__348_19-20_1073_0 ER -
Karine Beauchard; Vahagn Nersesyan. Semi-global weak stabilization of bilinear Schrödinger equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1073-1078. doi : 10.1016/j.crma.2010.09.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.002/
[1] Feedback stabilization of distributed semilinear control systems, Appl. Math. Optim., Volume 5 (1979), pp. 169-179
[2] Controllability of a quantum particle in a moving potential well, J. Funct. Anal., Volume 232 (2006), pp. 328-389
[3] Implicit Lyapunov control of finite dimensional Schrödinger equations, Systems Control Lett., Volume 56 (2007) no. 5, pp. 388-395
[4] Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl. (2010) | DOI
[5] Practical stabilization of a quantum particle in a one-dimensional infinite square potential well, SIAM J. Control Optim., Volume 48 (2009) no. 2, pp. 1179-1205
[6] Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, AMS, 2003
[7] Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. IHP Non Linear Anal., Volume 26 (2009) no. 1, pp. 329-349
[8] Stabilization of a rotating body beam without damping, IEEE Trans. Automat. Control, Volume 43 (1998), pp. 608-618
[9] A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, Volume 52 (2007) no. 1, pp. 2-11
[10] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969
[11] Generic controllability properties for the bilinear Schrödinger equation, Comm. Partial Differential Equations, Volume 35 (2010), pp. 685-706
[12] Lyapunov control of a quantum particle in a decaying potential, Ann. IHP Non Linear Anal., Volume 2 (2009), pp. 1743-1765
[13] Lyapunov control of bilinear Schrödinger equations, Automatica, Volume 41 (2005), pp. 1987-1994
[14] Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications, Ann. IHP Non Linear Anal., Volume 27 (2010) no. 3, pp. 901-915
[15] Growth of Sobolev norms and controllability of the Schrödinger equation, Comm. Math. Phys., Volume 290 (2009) no. 1, pp. 371-387
[16] The squares of the Laplacian–Dirichlet eigenfunctions are generically linearly independent, ESAIM: COCV, Volume 16 (July–September 2010) no. 3, pp. 794-805
Cité par Sources :
Commentaires - Politique