[Des estimations d'erreurs pour la discrétisation des équations paraboliques sur une classe générale multidimensionnelle de maillages non conformes]
Une classe assez générale de maillages non conformes a été récemment utilisée pour approximer les équations stationnaires de diffusion hétérogène anisotrope pour toute dimension d'espace. Le but de ce travail est d'obtenir des estimations d'erreur pour la discrétisation des équations paraboliques sur cette classe générale de maillages. On présente un schéma implicite où la condition initiale a été discrétisée en utilisant une “projection orthogonale” de la condition initiale. Nous fournissons des estimations d'erreur en normes discrètes de
A general class of nonconforming meshes has been recently used to approximate stationary anisotropic heterogeneous diffusion problems in any space dimensions. The aim of the present work is to deal with some error estimates of the discretization of parabolic equations on this general class of meshes in several space dimensions. We present an implicit scheme based on an orthogonal projection of the exact initial function. We provide error estimates in discrete norms
Accepté le :
Publié le :
Abdallah Bradji 1 ; Jürgen Fuhrmann 2
@article{CRMATH_2010__348_19-20_1119_0, author = {Abdallah Bradji and J\"urgen Fuhrmann}, title = {Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids}, journal = {Comptes Rendus. Math\'ematique}, pages = {1119--1122}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.020}, language = {en}, }
TY - JOUR AU - Abdallah Bradji AU - Jürgen Fuhrmann TI - Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids JO - Comptes Rendus. Mathématique PY - 2010 SP - 1119 EP - 1122 VL - 348 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2010.09.020 LA - en ID - CRMATH_2010__348_19-20_1119_0 ER -
%0 Journal Article %A Abdallah Bradji %A Jürgen Fuhrmann %T Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids %J Comptes Rendus. Mathématique %D 2010 %P 1119-1122 %V 348 %N 19-20 %I Elsevier %R 10.1016/j.crma.2010.09.020 %G en %F CRMATH_2010__348_19-20_1119_0
Abdallah Bradji; Jürgen Fuhrmann. Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1119-1122. doi : 10.1016/j.crma.2010.09.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.020/
[1] Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes, IMA Journal of Numerical Analysis (2009) (Advance Access published on June 16) | DOI
[1] Some simples error estimates for finite volume approximation of parabolic equations, C. R. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 9–10, pp. 571-574
-
-norm superconvergence of mixed finite element schemes applied to multidimensional parabolic equations, Communications on Analysis and Computation, Volume 3 (2025) no. 0, p. 40 | DOI:10.3934/cac.2025003 - Steady-state inhomogeneous diffusion with generalized oblique boundary conditions, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 57 (2023) no. 5, p. 2701 | DOI:10.1051/m2an/2023063
- A Convergence Result of a Linear SUSHI Scheme Using Characteristics Method for a Semi-linear Parabolic Equation, Advances in High Performance Computing, Volume 902 (2021), p. 452 | DOI:10.1007/978-3-030-55347-0_38
- Convergence Analysis of a Finite Volume Gradient Scheme for a Linear Parabolic Equation Using Characteristic Methods, Large-Scale Scientific Computing, Volume 11958 (2020), p. 566 | DOI:10.1007/978-3-030-41032-2_65
- On the convergence and convergence order of finite volume gradient schemes for oblique derivative boundary value problems, Computational and Applied Mathematics, Volume 37 (2018) no. 3, p. 2533 | DOI:10.1007/s40314-017-0463-8
- Finite Volume Methods: Foundation and Analysis, Encyclopedia of Computational Mechanics Second Edition (2017), p. 1 | DOI:10.1002/9781119176817.ecm2010
- An analysis for the convergence order of gradient schemes for semilinear parabolic equations, Computers Mathematics with Applications, Volume 72 (2016) no. 5, p. 1287 | DOI:10.1016/j.camwa.2016.06.031
- A full analysis of a new second order finite volume approximation based on a low-order scheme using general admissible spatial meshes for the unsteady one dimensional heat equation, Journal of Mathematical Analysis and Applications, Volume 416 (2014) no. 1, p. 258 | DOI:10.1016/j.jmaa.2014.02.043
- Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes, Applications of Mathematics, Volume 58 (2013) no. 1, p. 1 | DOI:10.1007/s10492-013-0001-y
- An analysis of a second-order time accurate scheme for a finite volume method for parabolic equations on general nonconforming multidimensional spatial meshes, Applied Mathematics and Computation, Volume 219 (2013) no. 11, p. 6354 | DOI:10.1016/j.amc.2012.12.050
- Some Abstract Error Estimates of a Finite Volume Scheme for the Wave Equation on General Nonconforming Multidimensional Spatial Meshes, Finite Volumes for Complex Applications VI Problems Perspectives, Volume 4 (2011), p. 175 | DOI:10.1007/978-3-642-20671-9_19
Cité par 11 documents. Sources : Crossref
Commentaires - Politique