Comptes Rendus
Algebraic Geometry
Note on local structure of Artin stacks
[Note sur la structure locale de champs de Artin]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1107-1109.

Dans cette Note, nous montrons que tout champ algébrique dont l'inertie est finie, est étale-localement isomorphe au quotient d'un schéma affine par une action du groupe général linéaire.

In this Note we show that an Artin stack with finite inertia stack is étale locally isormorphic to the quotient of an affine scheme by an action of a general linear group.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.09.022

Isamu Iwanari 1

1 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
@article{CRMATH_2010__348_19-20_1107_0,
     author = {Isamu Iwanari},
     title = {Note on local structure of {Artin} stacks},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1107--1109},
     publisher = {Elsevier},
     volume = {348},
     number = {19-20},
     year = {2010},
     doi = {10.1016/j.crma.2010.09.022},
     language = {en},
}
TY  - JOUR
AU  - Isamu Iwanari
TI  - Note on local structure of Artin stacks
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1107
EP  - 1109
VL  - 348
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2010.09.022
LA  - en
ID  - CRMATH_2010__348_19-20_1107_0
ER  - 
%0 Journal Article
%A Isamu Iwanari
%T Note on local structure of Artin stacks
%J Comptes Rendus. Mathématique
%D 2010
%P 1107-1109
%V 348
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2010.09.022
%G en
%F CRMATH_2010__348_19-20_1107_0
Isamu Iwanari. Note on local structure of Artin stacks. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1107-1109. doi : 10.1016/j.crma.2010.09.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.022/

[1] D. Abramovich; A. Vistoli Compactifying the space of stable maps, J. Amer. Math. Soc., Volume 15 (2005), pp. 27-75

[2] D. Abramovich; M. Olsson; A. Vistoli Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 1057-1091

[3] B. Conrad, The Keel–Mori theorem via stacks, preprint.

[4] D. Edidin; B. Hassett; A. Kresch; A. Vistoli Brauer groups and quotient stacks, Amer. J. Math., Volume 123 (2001), pp. 761-777

[5] I. Iwanari Stable points on algebraic stacks, Adv. Math., Volume 223 (2010), pp. 257-299

[6] R. Joshua Riemann–Roch for algebraic stacks: I, Compositio Math., Volume 136 (2003), pp. 117-169

[7] S. Keel; S. Mori Quotients by groupoids, Ann. of Math., Volume 145 (1997), pp. 193-213

[8] D. Knutson Algebraic Spaces, Lecture Notes in Math., vol. 203, Springer, 1971

[9] G. Laumon; L. Moret-Bailly Champs Algébriques, Springer-Verlag, 2000

[10] S. Mitchell, Hypercohomology spectra and Thomason's descent theorem, preprint.

[11] M. Olsson Hom-stacks and restriction of scalars, Duke Math. J., Volume 134 (2006), pp. 139-164

[12] R.W. Thomason Algebraic K-theory and étale cohomology, Ann. Sci. Ec. Norm. Sup., Volume 18 (1985), pp. 437-552

[13] R.W. Thomason Algebraic K-theory of group scheme actions (W. Browder, ed.), Algebraic Topology and Algebraic K-theory, Ann. Math. Stud., vol. 113, Princeton University Press, Princeton, NJ, 1987, pp. 539-563

[14] R.W. Thomason Equivariant resolution, linearization, and Hilbert's fourteenth problem over arbitrary base schemes, Adv. Math., Volume 65 (1987), pp. 16-34

[15] R.W. Thomason Equivariant algebraic vs. topological K-homology Atiyah–Segal-style, Duke Math. J., Volume 56 (1988), pp. 589-636

Cité par Sources :

Commentaires - Politique