Comptes Rendus
Differential Geometry
Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians
[Extension de la formule de Reilly avec applications aux estimées de valeurs propres pour les laplaciens avec dérive]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1203-1206.

Dans cette Note, nous étendons la formule de Reilly au cas des opérateurs Laplaciens avec dérive, et l'appliquons à l'étude d'estimées de valeurs propres pour de tels opérateurs sur des variétés riemanniennes compactes à bord. Nos estimées généralisent des résultats antérieurs de Reilly ainsi que de Choi et Wang.

In this Note, we extend the Reilly formula for drifting Laplacian operator and apply it to study eigenvalue estimate for drifting Laplacian operators on compact Riemannian manifolds' boundary. Our results on eigenvalue estimates extend previous results of Reilly and Choi and Wang.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.003
Li Ma 1 ; Sheng-Hua Du 2

1 Department of Mathematics, Henan Normal University, Xinxiang, 453007, China
2 Department of Mathematics, Tsinghua University, Beijing, 100084, China
@article{CRMATH_2010__348_21-22_1203_0,
     author = {Li Ma and Sheng-Hua Du},
     title = {Extension of {Reilly} formula with applications to eigenvalue estimates for drifting {Laplacians}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1203--1206},
     publisher = {Elsevier},
     volume = {348},
     number = {21-22},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.003},
     language = {en},
}
TY  - JOUR
AU  - Li Ma
AU  - Sheng-Hua Du
TI  - Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1203
EP  - 1206
VL  - 348
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2010.10.003
LA  - en
ID  - CRMATH_2010__348_21-22_1203_0
ER  - 
%0 Journal Article
%A Li Ma
%A Sheng-Hua Du
%T Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians
%J Comptes Rendus. Mathématique
%D 2010
%P 1203-1206
%V 348
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2010.10.003
%G en
%F CRMATH_2010__348_21-22_1203_0
Li Ma; Sheng-Hua Du. Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1203-1206. doi : 10.1016/j.crma.2010.10.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.003/

[1] T. Aubin Some Nonlinear Problems in Riemannian Geometry, Springer Monogr. Math., Springer-Verlag, Berlin, 1998

[2] D. Bakry; M. Emery Diffusion hypercontractivities, Séminaire de Probabilités XIX, 1983/1984 (Lect. Notes in Math.), Volume vol. 1123, Springer, Berlin (1985), pp. 177-206

[3] D. Bakry; Z.M. Qian Volume comparison theorems without Jacobi fields, Current Trends in Potential Theory, Theta Ser. Adv. Math., vol. 4, Theta, Bucharest, 2005, pp. 115-122

[4] H. Choi; A.N. Wang A first eigenvalue estimate for minimal hypersurfaces, J. Diff. Geom., Volume 18 (1983), pp. 559-562

[5] B. Chow; P. Lu; L. Ni Hamilton's Ricci Flow, Lectures in Contemporary Mathematics, vol. 3, Science Press and American Mathematical Society, 2006

[6] S. Gallot; D. Hulin; J. Lafontaine Riemannian Geometry, Universitext, Springer-Verlag, Berlin, 2004

[7] R. Hamilton The formation of singularities in the Ricci flow, Surveys Diff. Geom., Volume 2 (1995), pp. 7-136

[8] P. Li Lecture Notes on Geometric Analysis, Lecture Series, vol. 6, Seoul National University, 1993 http://math.uci.edu/~pli/lecture.pdf

[9] P. Li; S.T. Yau Estimates of eigenvalues of a compact Riemannian manifold, Geometry of Laplace Operator, Proc. Symp. Pure Math., vol. XXXVI, AMS, Providence, RI, 1980, pp. 205-239

[10] P. Li; S.T. Yau On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986), pp. 153-201

[11] X.D. Li Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pure Appl., Volume 84 (2005), pp. 1295-1361

[12] Murat Limoncu The Bochner technique and modification of the Ricci tensor, Ann. Global Anal. Geom., Volume 36 (2009), pp. 285-291

[13] Jun Ling A lower bound of the first eigenvalue of a closed manifold with positive Ricci curvature, Ann. Global Anal. Geom., Volume 31 (2007) no. 4, pp. 385-408

[14] Li Ma Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal., Volume 241 (2006), pp. 374-382

[15] L. Ma, Eigenvalue estimates and L1 energy on closed manifolds, preprint, 2009.

[16] L. Ma Hamilton type estimates for heat equations on manifolds | arXiv

[17] L. Ma; B.Y. Liu Convex eigenfunction of a drifting Laplacian operator and the fundamental gap, Pacific J. Math., Volume 240 (2009), pp. 343-361

[18] L. Ma; B.Y. Liu Convexity of the first eigenfunction of the drifting Laplacian operator and its applications, New York J. Math., Volume 14 (2008), pp. 393-401

[19] G. Perelman The entropy formula for the Ricci flow and its geometric applications, 2002 | arXiv

[20] R.C. Reilly Applications of Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., Volume 26 (1977), pp. 459-472

[21] R. Schoen; S.T. Yau Lectures on Differential Geometry, International Press, 1994

[22] C. Villani Optimal Transport, Old and New, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009

[23] Changyu Xia, Universal inequalities for eigenvalues of the vibration problem for a clamped plate on Riemannian manifolds, Quart. J. Math., September 4, 2009, . | DOI

Cité par Sources :

The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20090002110019.

Commentaires - Politique


Ces articles pourraient vous intéresser

The lower and upper bounds of the first eigenvalues for the bi-harmonic operator on manifolds

Liuwei Zhang

C. R. Math (2015)


Remarques sur le spectre de l'opérateur de Dirac

Nicolas Ginoux

C. R. Math (2003)


On an inequality of Brendle in the hyperbolic space

Oussama Hijazi; Sebastián Montiel; Simon Raulot

C. R. Math (2018)