Dans cet article nous étudions la propriété d'autosimilarité globale des processus de Lévy sur les groupes de Lie.
In this Note we study the global autosimilarity property of Lévy processes on Lie groups.
Accepté le :
Publié le :
Mohamed Abbassi 1
@article{CRMATH_2010__348_21-22_1207_0, author = {Mohamed Abbassi}, title = {Processus de {L\'evy} autosimilaires sur les groupes de {Lie}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1207--1210}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.014}, language = {fr}, }
Mohamed Abbassi. Processus de Lévy autosimilaires sur les groupes de Lie. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1207-1210. doi : 10.1016/j.crma.2010.10.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.014/
[1] Lévy processes in stochastic differential geometry (O. Barndorff-Nielsen; T. Mikosch; S. Resnick, eds.), Lévy Processes : Theory and Applications, Birkhäuser, 2001, pp. 119-138
[2] Self-similarity and fractional Brownian motions on Lie groups, Stochastic Process. Appl., Volume 117 (2007), pp. 550-574
[3] Stable semi-groups of measures on the Heisenberg group, Studia Math., Volume LXXIX (1984)
[4] Stable Lévy Processes on Nilpotent Lie Groups, McGraw-Hill, London, 1993
[5] Asymptotic self-similarity and short time asymptotics of stochastic flows, J. Math. Sci. Univ. Tokyo, Volume 4 (1997)
[6] Infinite convolution products and refinable distributions Lie groups, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 2913-2936
[7] Support theorem for jump processes, Stochastic Process. Appl., Volume 89 (2000), pp. 1-30
Cité par Sources :
Commentaires - Politique