Comptes Rendus
Partial Differential Equations/Optimal Control
Observability estimate for stochastic Schrödinger equations
[Inégalité d'observabilité pour les équations de Schrödinger stochastiques]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1159-1162.

Dans cette Note, nous établissons une inégalité d'observabilité pour les équations de Schrödinger stochastiques avec des termes d'ordre inférieur à coefficients non réguliers. Notre inégalité s'obtient à partir des inégalités de Carleman globales qui découlent d'une identité à poids pour les opérateurs de type Schrödinger stochastiques. Comme conséquence intéressante de cette identité, on retrouve tous les résultats connus de controlabilité/observabilité pour les équations aux dérivées partielles stochastiques et déterministes, de type Schrödinger et hyperboliques, où l'utilisation des inégalités de Carleman a joué un rôle.

In this Note, we present an observability estimate for stochastic Schrödinger equations with nonsmooth lower order terms. The desired inequality is derived by a global Carleman estimate which is based on a fundamental weighted identity for stochastic Schrödinger-like operator. As an interesting byproduct, starting from this identity, one can deduce all the known controllability/observability results for several stochastic and deterministic partial differential equations that are derived before via Carleman estimate in the literature.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.016

Qi Lü 1, 2

1 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
2 School of Mathematics, Sichuan University, Chengdu 610064, China
@article{CRMATH_2010__348_21-22_1159_0,
     author = {Qi L\"u},
     title = {Observability estimate for stochastic {Schr\"odinger} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1159--1162},
     publisher = {Elsevier},
     volume = {348},
     number = {21-22},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.016},
     language = {en},
}
TY  - JOUR
AU  - Qi Lü
TI  - Observability estimate for stochastic Schrödinger equations
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1159
EP  - 1162
VL  - 348
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2010.10.016
LA  - en
ID  - CRMATH_2010__348_21-22_1159_0
ER  - 
%0 Journal Article
%A Qi Lü
%T Observability estimate for stochastic Schrödinger equations
%J Comptes Rendus. Mathématique
%D 2010
%P 1159-1162
%V 348
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2010.10.016
%G en
%F CRMATH_2010__348_21-22_1159_0
Qi Lü. Observability estimate for stochastic Schrödinger equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1159-1162. doi : 10.1016/j.crma.2010.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.016/

[1] V. Barbu; A. Răscanu; G. Tessitore Carleman estimate and controllability of linear stochastic heat equations, Appl. Math. Optim., Volume 47 (2003), pp. 97-120

[2] L. Baudouin; J.P. Puel Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554

[3] X. Fu A weighted identity for partial differential operators of second order and its applications, C. R. Acad. Sci. Paris Sér. I, Volume 342 (2006), pp. 579-584

[4] X. Fu; J. Yong; X. Zhang Exact controllability for the multidimensional semilinear hyperbolic equations, SIAM J. Control Optim., Volume 46 (2007), pp. 1578-1614

[5] A.V. Fursikov; O.Yu. Imanuvilov Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Seoul, 1996

[6] I. Lasiecka; R. Triggiani; X. Zhang Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates: Part I. H1-estimates, J. Inverse Ill-Posed Probl., Volume 11 (2004), pp. 43-123

[7] G. Lebeau Contrôle de l'équation de Schrödinger, J. Math. Pures Appl., Volume 71 (1992), pp. 267-291

[8] Q. Lü, Carleman and observability estimates for stochastic Schrödinger equations, and its applications, preprint.

[9] E. Machtyngier Exact controllability for the Schrödinger equation, SIAM J. Control Optim., Volume 32 (1994), pp. 24-34

[10] A. Mercado; A. Osses; L. Rosier Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, Volume 24 (2008), p. 015017

[11] K.D. Phung Observability and control of Schrödinger equations, SIAM J. Control Optim., Volume 40 (2001), pp. 211-230

[12] S. Tang; X. Zhang Null controllability for forward and backward stochastic parabolic equations, SIAM J. Control Optim., Volume 48 (2009), pp. 2191-2216

[13] X. Zhang Exact controllability of the semilinear plate equations, Asymptot. Anal., Volume 27 (2001), pp. 95-125

[14] X. Zhang Carleman and observability estimates for stochastic wave equations, SIAM J. Math. Anal., Volume 40 (2008), pp. 851-868

[15] E. Zuazua Remarks on the controllability of the Schrödinger equation, Quantum Control: Mathematical and Numerical Challenges, CRM Proc. Lecture Notes, vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 193-211

Cité par Sources :

Commentaires - Politique