[Inégalité d'observabilité pour les équations de Schrödinger stochastiques]
Dans cette Note, nous établissons une inégalité d'observabilité pour les équations de Schrödinger stochastiques avec des termes d'ordre inférieur à coefficients non réguliers. Notre inégalité s'obtient à partir des inégalités de Carleman globales qui découlent d'une identité à poids pour les opérateurs de type Schrödinger stochastiques. Comme conséquence intéressante de cette identité, on retrouve tous les résultats connus de controlabilité/observabilité pour les équations aux dérivées partielles stochastiques et déterministes, de type Schrödinger et hyperboliques, où l'utilisation des inégalités de Carleman a joué un rôle.
In this Note, we present an observability estimate for stochastic Schrödinger equations with nonsmooth lower order terms. The desired inequality is derived by a global Carleman estimate which is based on a fundamental weighted identity for stochastic Schrödinger-like operator. As an interesting byproduct, starting from this identity, one can deduce all the known controllability/observability results for several stochastic and deterministic partial differential equations that are derived before via Carleman estimate in the literature.
Accepté le :
Publié le :
Qi Lü 1, 2
@article{CRMATH_2010__348_21-22_1159_0, author = {Qi L\"u}, title = {Observability estimate for stochastic {Schr\"odinger} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1159--1162}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.016}, language = {en}, }
Qi Lü. Observability estimate for stochastic Schrödinger equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1159-1162. doi : 10.1016/j.crma.2010.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.016/
[1] Carleman estimate and controllability of linear stochastic heat equations, Appl. Math. Optim., Volume 47 (2003), pp. 97-120
[2] Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554
[3] A weighted identity for partial differential operators of second order and its applications, C. R. Acad. Sci. Paris Sér. I, Volume 342 (2006), pp. 579-584
[4] Exact controllability for the multidimensional semilinear hyperbolic equations, SIAM J. Control Optim., Volume 46 (2007), pp. 1578-1614
[5] Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Seoul, 1996
[6] Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates: Part I. -estimates, J. Inverse Ill-Posed Probl., Volume 11 (2004), pp. 43-123
[7] Contrôle de l'équation de Schrödinger, J. Math. Pures Appl., Volume 71 (1992), pp. 267-291
[8] Q. Lü, Carleman and observability estimates for stochastic Schrödinger equations, and its applications, preprint.
[9] Exact controllability for the Schrödinger equation, SIAM J. Control Optim., Volume 32 (1994), pp. 24-34
[10] Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, Volume 24 (2008), p. 015017
[11] Observability and control of Schrödinger equations, SIAM J. Control Optim., Volume 40 (2001), pp. 211-230
[12] Null controllability for forward and backward stochastic parabolic equations, SIAM J. Control Optim., Volume 48 (2009), pp. 2191-2216
[13] Exact controllability of the semilinear plate equations, Asymptot. Anal., Volume 27 (2001), pp. 95-125
[14] Carleman and observability estimates for stochastic wave equations, SIAM J. Math. Anal., Volume 40 (2008), pp. 851-868
[15] Remarks on the controllability of the Schrödinger equation, Quantum Control: Mathematical and Numerical Challenges, CRM Proc. Lecture Notes, vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 193-211
Cité par Sources :
Commentaires - Politique