[Une identité avec poids pour des opérateurs aux dérivées partielles du second ordre et ses applications]
Dans cette Note, nous établissons une identité avec poids pour des opérateurs aux dérivées partielles du second ordre. De cette égalité, découlent tous les resultats connus de contrôlabilité/observabilité pour les équations paraboliques, les équations hyperboliques, l'équation de Schrödinger et celle des plaques, tous obtenus à partir des inégalités de Carleman. Par ailleurs, un nouveau résultat de contrôlabilité/observabilité est obtenu pour les équations de type paraboliques avec des coefficients à valeur complexe.
In this Note, a weighted identity for partial differential operators of second order is established. As its applications, one may deduce all the known controllability/observability results for the parabolic, hyperbolic, Schrödinger and plate equations that are derived via Carleman estimate. Meanwhile, a new controllability/observability result is presented for the parabolic equations with a complex principal part.
Accepté le :
Publié le :
Xiaoyu Fu 1
@article{CRMATH_2006__342_8_579_0, author = {Xiaoyu Fu}, title = {A weighted identity for partial differential operators of second order and its applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {579--584}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.02.023}, language = {en}, }
Xiaoyu Fu. A weighted identity for partial differential operators of second order and its applications. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 579-584. doi : 10.1016/j.crma.2006.02.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.023/
[1] Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554
[2] On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., Volume 41 (2002), pp. 798-819
[3] X. Fu, Null controllability for the parabolic equations with a complex principal part, Preprint
[4] X. Fu, J. Yong, X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, submitted for publication
[5] Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1994
[6] Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via point-wise Carleman estimates, Part I: -estimates, J. Inverse Ill-Posed Probl., Volume 12 (2004), pp. 43-123
[7] Carleman inequality for the backward stochastic parabolic equations with general coefficients, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004), pp. 775-780
[8] Exact controllability of the semilinear plate equations, Asymptotic Anal., Volume 27 (2001), pp. 95-125
[9] Some problems and results on the controllability of partial differential equations, Progr. in Math., vol. 169, Birkhäuser, Basel, Switzerland, 1998, pp. 276-311
[10] Controllability of partial differential equations and its semi-discrete approximation, Discrete Contin. Dynam. Systems, Volume 8 (2002), pp. 469-513
Cité par Sources :
Commentaires - Politique