In this Note, we present an observability estimate for stochastic Schrödinger equations with nonsmooth lower order terms. The desired inequality is derived by a global Carleman estimate which is based on a fundamental weighted identity for stochastic Schrödinger-like operator. As an interesting byproduct, starting from this identity, one can deduce all the known controllability/observability results for several stochastic and deterministic partial differential equations that are derived before via Carleman estimate in the literature.
Dans cette Note, nous établissons une inégalité d'observabilité pour les équations de Schrödinger stochastiques avec des termes d'ordre inférieur à coefficients non réguliers. Notre inégalité s'obtient à partir des inégalités de Carleman globales qui découlent d'une identité à poids pour les opérateurs de type Schrödinger stochastiques. Comme conséquence intéressante de cette identité, on retrouve tous les résultats connus de controlabilité/observabilité pour les équations aux dérivées partielles stochastiques et déterministes, de type Schrödinger et hyperboliques, où l'utilisation des inégalités de Carleman a joué un rôle.
Accepted:
Published online:
Qi Lü 1, 2
@article{CRMATH_2010__348_21-22_1159_0, author = {Qi L\"u}, title = {Observability estimate for stochastic {Schr\"odinger} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1159--1162}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.016}, language = {en}, }
Qi Lü. Observability estimate for stochastic Schrödinger equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1159-1162. doi : 10.1016/j.crma.2010.10.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.016/
[1] Carleman estimate and controllability of linear stochastic heat equations, Appl. Math. Optim., Volume 47 (2003), pp. 97-120
[2] Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, Volume 18 (2002), pp. 1537-1554
[3] A weighted identity for partial differential operators of second order and its applications, C. R. Acad. Sci. Paris Sér. I, Volume 342 (2006), pp. 579-584
[4] Exact controllability for the multidimensional semilinear hyperbolic equations, SIAM J. Control Optim., Volume 46 (2007), pp. 1578-1614
[5] Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Seoul, 1996
[6] Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates: Part I. -estimates, J. Inverse Ill-Posed Probl., Volume 11 (2004), pp. 43-123
[7] Contrôle de l'équation de Schrödinger, J. Math. Pures Appl., Volume 71 (1992), pp. 267-291
[8] Q. Lü, Carleman and observability estimates for stochastic Schrödinger equations, and its applications, preprint.
[9] Exact controllability for the Schrödinger equation, SIAM J. Control Optim., Volume 32 (1994), pp. 24-34
[10] Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights, Inverse Problems, Volume 24 (2008), p. 015017
[11] Observability and control of Schrödinger equations, SIAM J. Control Optim., Volume 40 (2001), pp. 211-230
[12] Null controllability for forward and backward stochastic parabolic equations, SIAM J. Control Optim., Volume 48 (2009), pp. 2191-2216
[13] Exact controllability of the semilinear plate equations, Asymptot. Anal., Volume 27 (2001), pp. 95-125
[14] Carleman and observability estimates for stochastic wave equations, SIAM J. Math. Anal., Volume 40 (2008), pp. 851-868
[15] Remarks on the controllability of the Schrödinger equation, Quantum Control: Mathematical and Numerical Challenges, CRM Proc. Lecture Notes, vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 193-211
Cited by Sources:
Comments - Politique