Accepted:
Published online:
Nicolas Champagnat 1; Pierre-Emmanuel Jabin 1, 2; Gaël Raoul 3
@article{CRMATH_2010__348_23-24_1267_0, author = {Nicolas Champagnat and Pierre-Emmanuel Jabin and Ga\"el Raoul}, title = {Convergence to equilibrium in competitive {Lotka{\textendash}Volterra} and chemostat systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1267--1272}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.11.001}, language = {en}, }
TY - JOUR AU - Nicolas Champagnat AU - Pierre-Emmanuel Jabin AU - Gaël Raoul TI - Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems JO - Comptes Rendus. Mathématique PY - 2010 SP - 1267 EP - 1272 VL - 348 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2010.11.001 LA - en ID - CRMATH_2010__348_23-24_1267_0 ER -
%0 Journal Article %A Nicolas Champagnat %A Pierre-Emmanuel Jabin %A Gaël Raoul %T Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems %J Comptes Rendus. Mathématique %D 2010 %P 1267-1272 %V 348 %N 23-24 %I Elsevier %R 10.1016/j.crma.2010.11.001 %G en %F CRMATH_2010__348_23-24_1267_0
Nicolas Champagnat; Pierre-Emmanuel Jabin; Gaël Raoul. Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1267-1272. doi : 10.1016/j.crma.2010.11.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.001/
[1] N. Champagnat, S. Méléard, Polymorphic evolution sequence and evolutionary branching, Probab. Theor. Relat. Fields (2010), , in press. | DOI
[2] N. Champagnat, P.E. Jabin, The evolutionary limit for models of populations interacting competitively with many resources, preprint, 2010.
[3] A beginner's guide to adaptive dynamics, Banach Center Publications, Volume 63 (2004), pp. 47-86
[4] The dynamics of adaptation: An illuminating example and a Hamilton–Jacobi approach, Theor. Popul. Biol., Volume 67 (2005), pp. 257-271
[5] Global asymptotic stability in Volterra's population systems, J. Math. Biology, Volume 19 (1984), pp. 157-168
[6] Systems of differential equations which are competitive or cooperative. III. Competing species, Nonlinearity, Volume 1 (1988) no. 1, pp. 51-71
[7] Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998
[8] P.E. Jabin, G. Raoul, Selection dynamics with competition, J. Math. Biol., in press.
[9] Qualitative behavior of n-dimensional ratio-dependent predator–prey systems, Appl. Math. Comput., Volume 199 (2008) no. 2, pp. 535-546
[10] Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction (S.J. van Strien; S.M. Verduyn Lunel, eds.), Stochastic and Spatial Structures of Dynamical Systems, North-Holland, Amsterdam, 1996, pp. 183-231
[11] Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, 2007
[12] The Theory of the Chemostat, Dynamics of Microbial Competition, Cambridge Studies in Mathematical Biology, vol. 13, Cambridge University Press, 1995
[13] Hopf bifurcations in competitive three-dimensional Lotka–Volterra systems, Dynam. Stability Systems, Volume 8 (1993) no. 3, pp. 189-217
Cited by Sources:
Comments - Policy