We modify Singer's idea to give a direct description of the lambda algebra using modular invariant theory. As an application, we describe the algebraic transfer in purely invariant-theoretic framework, thus, provides an effective computational tool for the algebraic transfer. The induced action of the Steenrod algebra on lambda algebra is also investigated and clarified.
Utilisant la théorie d'invariants modulaires, nous modifions l'idée de Singer pour donner une description directe de la lambda algèbre. En application, nous décrivons les transferts algébraiques à l'aide de la théorie d'invariants, et ainsi fournir une méthode efficace pour les calculer. L'action induite de l'algèbre de Steenrod sur la lambda algèbre est également étudiée.
Accepted:
Published online:
Phan H. Chơn 1; Lê M. Hà 2
@article{CRMATH_2011__349_1-2_21_0, author = {Phan H. Chơn and L\^e M. H\`a}, title = {Lambda algebra and the {Singer} transfer}, journal = {Comptes Rendus. Math\'ematique}, pages = {21--23}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.008}, language = {en}, }
Phan H. Chơn; Lê M. Hà. Lambda algebra and the Singer transfer. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 21-23. doi : 10.1016/j.crma.2010.11.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.008/
[1] Modular representations on the homology of powers of real projective space, Contemp. Math., Volume 146 (1993), pp. 49-70
[2] The mod-p lower central series and the Adams spectral sequence, Topology, Volume 5 (1966), pp. 331-342
[3] An example in the cohomology of augmented algebras, J. Pure and Applied Algebra, Volume 55 (1988), pp. 81-84
[4] On behavior of the algebraic transfer, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 473-487
[5] Sub-Hopf algebra of the Steenrod algebra and the Singer transfer, Geo. Topo. Mono., Volume 11 (2007), pp. 81-104
[6] The weak conjecture on spherical class, Math. Z., Volume 233 (1999), pp. 727-743
[7] The cohomology of the Steenrod algebra and representations of the general linear groups, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 4065-4089
[8] The image of the fourth algebraic transfer, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1415-1418
[9] Chevalley group theory and the transfer in the homology of symmetric groups, Topology, Volume 24 (1985), pp. 247-264
[10] Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 22 (1975), pp. 319-369
[11] Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 1785-1837
[12] On behavior of the fifth algebraic transfer, Geo. Topo. Mono., Volume 11 (2007), pp. 309-326
[13] Invariant theory and the Lambda algebra, Trans. Amer. Math. Soc., Volume 280 (1983), pp. 673-693
[14] The transfer in homological algebra, Math. Z., Volume 202 (1989), pp. 493-523
[15] Prime power representations of finite linear groups II, Canad. J. Math., Volume 9 (1957), pp. 347-351
[16] The unstable Adams spectral sequence for free iterated loop spaces, Mem. Amer. Math. Soc., Volume 36 (1982) no. 258
[17] Classifying spaces, Steenrod operations and algebraic closure, Topology, Volume 16 (1977), pp. 227-237
[18] A primer on the Dickson invariants (corrected version) http://www.math.purdue.edu/~wilker/papers/ (available at)
Cited by Sources:
☆ This work is partially supported by the NAFOSTED grant No. 101.01.51.09.
Comments - Policy