We compare the character of the algebra , as used by Fujiwara and Corwin and Greenleaf, with the character produced from biquantization techniques applied in the Lie case by Cattaneo and Torossian. We prove that up to a smaller (specialization) algebra, these two characters are the same. An old example is also treated and it is proved that we now get more information about the question of when the symmetrization is an isomorphism of algebras.
Nous comparons le caractère de lʼalgèbre , tel quʼutilisé par Fujiwara et Corwin–Greenleaf, avec le caractère produit par les techniques de bi-quantification appliquées au cas des algèbres de Lie par Cattaneo–Torossian. Nous démontrons que ces deux caractères coïncident, à une algèbre (de spécialisation) plus petite près. Nous discutons également un exemple bien connu et nous obtenons des informations supplémentaires quant à la question de savoir si la symétrisation est un isomorphisme dʼalgèbres.
Accepted:
Published online:
Panagiotis Batakidis 1
@article{CRMATH_2011__349_5-6_247_0, author = {Panagiotis Batakidis}, title = {Biquantization techniques for computing characters of differential operators on {Lie} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {247--250}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2010.11.012}, language = {en}, }
TY - JOUR AU - Panagiotis Batakidis TI - Biquantization techniques for computing characters of differential operators on Lie groups JO - Comptes Rendus. Mathématique PY - 2011 SP - 247 EP - 250 VL - 349 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2010.11.012 LA - en ID - CRMATH_2011__349_5-6_247_0 ER -
Panagiotis Batakidis. Biquantization techniques for computing characters of differential operators on Lie groups. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 247-250. doi : 10.1016/j.crma.2010.11.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.012/
[1] P. Batakidis, Déformation par quantification et théorie de Lie, Thèse de Doctorat, Univ. Paris VII, 2009.
[2] Deformation quantization and invariant differential operators, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 3–4, pp. 143-148
[3] Analyse harmonique sur les espaces symètriques nilpotents, J. Funct. Anal., Volume 59 (1984), pp. 211-254
[4] Relative formality theorem and quantization of coisotropic submanifolds, Adv. Math., Volume 208 (2007) no. 2, pp. 521-548
[5] Déformation, quantization, théorie de Lie, Collection Panoramas et Synthèse, vol. 20, SMF, 2005
[6] Quantification pour les paires symmétriques et diagrammes de Kontsevich, Ann. Sci. Ecole Norm. Sup. (5) (2008), pp. 787-852
[7] Commutativity of invariant differential operators on nilpotent homogeneous spaces with finite multiplicity, Comm. Pure Appl. Math., Volume 45 (1992) no. 6, pp. 681-748
[8] Analyse harmonique pour certaines représentations induites dʼun groupe de Lie nilpotent, J. Math. Soc. Japan, Volume 50 (1998) no. 3, pp. 753-766
[9] A commutativity criterion for certain algebras of invariant differential operators on nilpotent homogeneous spaces, Math. Ann., Volume 327 (2003) no. 3, pp. 513-544
[10] Deformation quantization of Poisson manifolds, Lett. Math. Phys., Volume 66 (2003) no. 3, pp. 157-216
Cited by Sources:
Comments - Politique