Let G be a connected reductive algebraic group defined over an algebraically closed field of positive characteristic. We study a generalization of the notion of G-complete reducibility in the context of Steinberg endomorphisms of G. Our main theorem extends a special case of a rationality result in this setting.
Soit G un groupe algébrique réductible connexe défini sur un corps algébriquement clos de caractéristique positive. Dans cette Note on étudie une généralisation de la notion de réductibilité G-complète dans le contexte des endomorphismes de Steinberg de G. Le théorème fondamental de la Note généralise un cas particulier dʼun résultat de rationalité.
Accepted:
Published online:
Sebastian Herpel 1; Gerhard Röhrle 1; Daniel Gold 2
@article{CRMATH_2011__349_5-6_243_0, author = {Sebastian Herpel and Gerhard R\"ohrle and Daniel Gold}, title = {Complete reducibility and {Steinberg} endomorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {243--246}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.02.008}, language = {en}, }
Sebastian Herpel; Gerhard Röhrle; Daniel Gold. Complete reducibility and Steinberg endomorphisms. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 243-246. doi : 10.1016/j.crma.2011.02.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.008/
[1] A geometric approach to complete reducibility, Invent. Math., Volume 161 (2005) no. 1, pp. 177-218
[2] Complete reducibility and separable field extensions, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 9–10, pp. 495-497
[3] Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., Volume 27 (1965), pp. 55-150
[4] Classification des groupes algébriques semi-simples, Collected Works, vol. 3, Springer-Verlag, Berlin, 2005
[5] An Introduction to Algebraic Geometry and Algebraic Groups, Oxford Graduate Texts in Mathematics, vol. 10, Oxford University Press, Oxford, 2003
[6] The Classification of the Finite Simple Groups. Part I, Mathematical Surveys and Monographs, vol. 40 (3), American Mathematical Society, Providence, RI, 1998 (Chapter A: Almost simple -groups)
[7] Subgroups of simple algebraic groups and of related finite and locally finite groups of Lie type, Istanbul, 1994 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 471, Kluwer Acad. Publ., Dordrecht (1995), pp. 71-96
[8] On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function, Duke Math. J., Volume 128 (2005) no. 3, pp. 541-557
[9] On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc., Volume 350 (1998) no. 9, pp. 3409-3482
[10] J-P. Serre, La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs, Séminaire au Collège de France, résumé dans [15, pp. 93–98], 1997.
[11] The notion of complete reducibility in group theory, 1998 (Moursund Lectures, Part II, University of Oregon) | arXiv
[12] J-P. Serre, Complète réductibilité, Séminaire Bourbaki, 56ème année, 2003–2004, no. 932.
[13] Linear Algebraic Groups, Progress in Mathematics, vol. 9, Birkhäuser Boston Inc., Boston, MA, 1998
[14] Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, vol. 80, American Mathematical Society, Providence, RI, 1968
[15] Théorie des groupes, Résumé des Cours et Travaux, Annuaire du Collège de France 97e année (1996–1997), pp. 89-102
Cited by Sources:
Comments - Policy