Comptes Rendus
Logic
Regularity theory for pluriclosed flow
[Théorie de la régularité pour un flot multifermé]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 1-4.

In Streets and Tian (2010) [6] the authors introduced a parabolic flow of pluriclosed metrics. New advancements in the study of this flow are given, including improved regularity results, a gradient property and expanding entropy functional, and a conjectural picture of optimal existence results and their topological consequences. Finally we introduce a family of geometric evolutions in almost Hermitian geometry which provides a general framework for this flow.

Dans Streets et Tian (2010) [6] les auteurs ont introduit un flot parabolique de métriques multifermées. On donne dans cette Note de nouveaux résultats incluant des propriétés de régularité, une propriété de gradient et une fonctionnelle d'entropie croissante, puis une conjecture pour des résultats d'existence et leurs conséquences topologiques. On introduit aussi une famille d'évolutions géométriques dans une géométrie presque hermitienne qui fournit un cadre général à l'étude de ce flot.

Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.014

Jeffrey Streets 1 ; Gang Tian 1

1 Fine Hall, Princeton University, Princeton, NJ 08544, United States
@article{CRMATH_2011__349_1-2_1_0,
     author = {Jeffrey Streets and Gang Tian},
     title = {Regularity theory for pluriclosed flow},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1--4},
     publisher = {Elsevier},
     volume = {349},
     number = {1-2},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.014},
     language = {en},
}
TY  - JOUR
AU  - Jeffrey Streets
AU  - Gang Tian
TI  - Regularity theory for pluriclosed flow
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1
EP  - 4
VL  - 349
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2010.11.014
LA  - en
ID  - CRMATH_2011__349_1-2_1_0
ER  - 
%0 Journal Article
%A Jeffrey Streets
%A Gang Tian
%T Regularity theory for pluriclosed flow
%J Comptes Rendus. Mathématique
%D 2011
%P 1-4
%V 349
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2010.11.014
%G en
%F CRMATH_2011__349_1-2_1_0
Jeffrey Streets; Gang Tian. Regularity theory for pluriclosed flow. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 1-4. doi : 10.1016/j.crma.2010.11.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.014/

[1] G. Dloussky; K. Oeljeklaus; M. Toma Class VII0 surfaces with b2 curves, Tohoku Math. J. (2), Volume 55 (2003) no. 2, pp. 283-309

[2] M. Feldman; T. Ilmanen; L. Ni Entropy and reduced distance for Ricci expanders, J. Geom. Anal., Volume 15 (2005) no. 1, pp. 49-62

[3] I. Nakamura On surfaces of class VII0 with curves, Invent. Math., Volume 78 (1984), pp. 393-443

[4] T. Oliynyk; V. Suneeta; E. Woolgar A gradient flow for worldsheet nonlinear sigma models, Nuclear Phys. B, Volume 739 (2006) no. 3, pp. 441-458

[5] J. Streets Regularity and expanding entropy for connection Ricci flow, J. Geom. Phys., Volume 58 (2008), pp. 900-912

[6] J. Streets; G. Tian A parabolic flow of pluriclosed metrics, Int. Math. Res. Notices, Volume 2010 (2010), pp. 3101-3133

[7] J. Streets, G. Tian, Hermitian curvature flow, JEMS, in press, . | arXiv

[8] J. Streets; G. Tian Regularity results for pluriclosed flow | arXiv

[9] A. Teleman Donaldson theory on non-Kählerian surfaces and class VII surfaces with b2=1, Invent. Math., Volume 162 (2006), pp. 493-521

[10] G. Tian New results and problems on Kähler–Ricci flow, Astérisque, Volume 322 (2008), pp. 71-92

[11] G. Tian; Z. Zhang On the Kähler–Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B, Volume 27 (2006) no. 2, pp. 179-192

  • Adrián Andrada; Alejandro Tolcachier Harmonic Complex Structures and Special Hermitian Metrics on Products of Sasakian Manifolds, The Journal of Geometric Analysis, Volume 34 (2024) no. 6 | DOI:10.1007/s12220-024-01620-x
  • Kyle Broder; James Stanfield On the Gauduchon curvature of Hermitian manifolds, International Journal of Mathematics, Volume 34 (2023) no. 07 | DOI:10.1142/s0129167x23500398
  • Anna Fino; Nicoletta Tardini Some remarks on Hermitian manifolds satisfying Kähler-like conditions, Mathematische Zeitschrift, Volume 298 (2021) no. 1-2, p. 49 | DOI:10.1007/s00209-020-02598-2
  • Gil R. Cavalcanti Hodge theory of SKT manifolds, Advances in Mathematics, Volume 374 (2020), p. 107270 | DOI:10.1016/j.aim.2020.107270
  • Masaya KAWAMURA PARABOLIC FLOWS ON ALMOST HERMITIAN MANIFOLDS, Kyushu Journal of Mathematics, Volume 73 (2019) no. 1, p. 69 | DOI:10.2206/kyushujm.73.69
  • Bo Guan; Qun Li The Dirichlet problem for a complex Monge–Ampère type equation on Hermitian manifolds, Advances in Mathematics, Volume 246 (2013), p. 351 | DOI:10.1016/j.aim.2013.07.006
  • Nicola Enrietti Static SKT metrics on Lie groups, Manuscripta Mathematica, Volume 140 (2013) no. 3-4, p. 557 | DOI:10.1007/s00229-012-0552-3

Cité par 7 documents. Sources : Crossref

Commentaires - Politique