[Théorie de la régularité pour un flot multifermé]
In Streets and Tian (2010) [6] the authors introduced a parabolic flow of pluriclosed metrics. New advancements in the study of this flow are given, including improved regularity results, a gradient property and expanding entropy functional, and a conjectural picture of optimal existence results and their topological consequences. Finally we introduce a family of geometric evolutions in almost Hermitian geometry which provides a general framework for this flow.
Dans Streets et Tian (2010) [6] les auteurs ont introduit un flot parabolique de métriques multifermées. On donne dans cette Note de nouveaux résultats incluant des propriétés de régularité, une propriété de gradient et une fonctionnelle d'entropie croissante, puis une conjecture pour des résultats d'existence et leurs conséquences topologiques. On introduit aussi une famille d'évolutions géométriques dans une géométrie presque hermitienne qui fournit un cadre général à l'étude de ce flot.
Publié le :
Jeffrey Streets 1 ; Gang Tian 1
@article{CRMATH_2011__349_1-2_1_0, author = {Jeffrey Streets and Gang Tian}, title = {Regularity theory for pluriclosed flow}, journal = {Comptes Rendus. Math\'ematique}, pages = {1--4}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.014}, language = {en}, }
Jeffrey Streets; Gang Tian. Regularity theory for pluriclosed flow. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 1-4. doi : 10.1016/j.crma.2010.11.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.014/
[1] Class VII0 surfaces with
[2] Entropy and reduced distance for Ricci expanders, J. Geom. Anal., Volume 15 (2005) no. 1, pp. 49-62
[3] On surfaces of class VII0 with curves, Invent. Math., Volume 78 (1984), pp. 393-443
[4] A gradient flow for worldsheet nonlinear sigma models, Nuclear Phys. B, Volume 739 (2006) no. 3, pp. 441-458
[5] Regularity and expanding entropy for connection Ricci flow, J. Geom. Phys., Volume 58 (2008), pp. 900-912
[6] A parabolic flow of pluriclosed metrics, Int. Math. Res. Notices, Volume 2010 (2010), pp. 3101-3133
[7] J. Streets, G. Tian, Hermitian curvature flow, JEMS, in press, . | arXiv
[8] Regularity results for pluriclosed flow | arXiv
[9] Donaldson theory on non-Kählerian surfaces and class VII surfaces with
[10] New results and problems on Kähler–Ricci flow, Astérisque, Volume 322 (2008), pp. 71-92
[11] On the Kähler–Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B, Volume 27 (2006) no. 2, pp. 179-192
- Harmonic Complex Structures and Special Hermitian Metrics on Products of Sasakian Manifolds, The Journal of Geometric Analysis, Volume 34 (2024) no. 6 | DOI:10.1007/s12220-024-01620-x
- On the Gauduchon curvature of Hermitian manifolds, International Journal of Mathematics, Volume 34 (2023) no. 07 | DOI:10.1142/s0129167x23500398
- Some remarks on Hermitian manifolds satisfying Kähler-like conditions, Mathematische Zeitschrift, Volume 298 (2021) no. 1-2, p. 49 | DOI:10.1007/s00209-020-02598-2
- Hodge theory of SKT manifolds, Advances in Mathematics, Volume 374 (2020), p. 107270 | DOI:10.1016/j.aim.2020.107270
- PARABOLIC FLOWS ON ALMOST HERMITIAN MANIFOLDS, Kyushu Journal of Mathematics, Volume 73 (2019) no. 1, p. 69 | DOI:10.2206/kyushujm.73.69
- The Dirichlet problem for a complex Monge–Ampère type equation on Hermitian manifolds, Advances in Mathematics, Volume 246 (2013), p. 351 | DOI:10.1016/j.aim.2013.07.006
- Static SKT metrics on Lie groups, Manuscripta Mathematica, Volume 140 (2013) no. 3-4, p. 557 | DOI:10.1007/s00229-012-0552-3
Cité par 7 documents. Sources : Crossref
Commentaires - Politique