Comptes Rendus
Mathematical Analysis
Multiplier sequences and logarithmic mesh
[Multiplicateurs et mailles logarithmiques]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 35-38.

In this Note we prove a new result about (finite) multiplier sequences, i.e. linear operators acting diagonally in the standard monomial basis of R[x] and sending polynomials with all real roots to polynomials with all real roots. Namely, we show that any such operator does not decrease the logarithmic mesh when acting on an arbitrary polynomial having all roots real and of the same sign. The logarithmic mesh of such a polynomial is defined as the minimal quotient of its consecutive roots taken in the non-decreasing order of their absolute values.

Les multiplicateurs considérés dans cette Note sont les opérateurs linéaires qui agissent diagonalement sur R[x] muni de sa base standard (les monômes) et qui transforment les polynômes à racines réelles en polynômes à racines réelles. Nous montrons qu'un tel opérateur, appliqué à un polynôme dont toutes les racines sont réelles et de même signe, ne diminue pas la maille logarithmique, c'est-à-dire le minimum du quotient de deux racines consécutives dans l'ordre croissant des valeurs absolues.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.11.031

Olga Katkova 1 ; Boris Shapiro 2 ; Anna Vishnyakova 1

1 Department of Mechanics & Mathematics, Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine
2 Department of Mathematics, Stockholm University, 10691, Stockholm, Sweden
@article{CRMATH_2011__349_1-2_35_0,
     author = {Olga Katkova and Boris Shapiro and Anna Vishnyakova},
     title = {Multiplier sequences and logarithmic mesh},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {35--38},
     publisher = {Elsevier},
     volume = {349},
     number = {1-2},
     year = {2011},
     doi = {10.1016/j.crma.2010.11.031},
     language = {en},
}
TY  - JOUR
AU  - Olga Katkova
AU  - Boris Shapiro
AU  - Anna Vishnyakova
TI  - Multiplier sequences and logarithmic mesh
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 35
EP  - 38
VL  - 349
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crma.2010.11.031
LA  - en
ID  - CRMATH_2011__349_1-2_35_0
ER  - 
%0 Journal Article
%A Olga Katkova
%A Boris Shapiro
%A Anna Vishnyakova
%T Multiplier sequences and logarithmic mesh
%J Comptes Rendus. Mathématique
%D 2011
%P 35-38
%V 349
%N 1-2
%I Elsevier
%R 10.1016/j.crma.2010.11.031
%G en
%F CRMATH_2011__349_1-2_35_0
Olga Katkova; Boris Shapiro; Anna Vishnyakova. Multiplier sequences and logarithmic mesh. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 35-38. doi : 10.1016/j.crma.2010.11.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.031/

[1] J. Borcea; P. Brändén Pólya–Schur master theorems for circular domains and their boundaries, Ann. of Math. (2), Volume 170 (2009) no. 1, pp. 465-492

[2] T. Craven; G. Csordas Problems and theorems in the theory of multiplier sequences, Serdica Math. J., Volume 22 (1996), pp. 515-524

[3] T. Craven; G. Csordas Multiplier sequences for fields, Illinois J. Math., Volume 21 (1977) no. 4, pp. 801-817

[4] N. Obreschkov Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963

[5] G. Pólya; J. Schur Über zwei Arten von Faktorenfolgen in der Theorie der algebraische Gleichungen, J. Reine Angew. Math., Volume 144 (1914), pp. 89-113

[6] A. Stoyanoff Sur un theoreme de M. Marcel Riesz, Nouv. Ann. Math., Volume 1 (1926), pp. 97-99

[7] G. Szegő Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. (2), Volume 13 (1922), pp. 28-55

  • Thomas Wolfs Applications of multiple orthogonal polynomials with hypergeometric moment generating functions, Advances in Applied Mathematics, Volume 158 (2024), p. 45 (Id/No 102709) | DOI:10.1016/j.aam.2024.102709 | Zbl:1544.33012
  • Olga Katkova; Mikhail Tyaglov; Anna Vishnyakova Hermite-Poulain theorems for linear finite difference operators, Constructive Approximation, Volume 52 (2020) no. 3, pp. 357-393 | DOI:10.1007/s00365-020-09507-0 | Zbl:1475.30024
  • Olga Katkova; Mikhail Tyaglov; Anna Vishnyakova Linear finite difference operators preserving the Laguerre-Pólya class, Complex Variables and Elliptic Equations, Volume 63 (2018) no. 11, pp. 1604-1619 | DOI:10.1080/17476933.2017.1400539 | Zbl:1395.30007
  • Martin Lamprecht Suffridge's convolution theorem for polynomials and entire functions having only real zeros, Advances in Mathematics, Volume 288 (2016), pp. 426-463 | DOI:10.1016/j.aim.2015.10.016 | Zbl:1335.30004
  • Mayya Golitsyna; Irina Karpenko On the Pochhammer transformation and hyperbolic polynomials decomposed in the Pochhammer basis, Journal of Difference Equations and Applications, Volume 22 (2016) no. 12, pp. 1871-1879 | DOI:10.1080/10236198.2016.1248956 | Zbl:1361.30007
  • Petter Brändén; Ilia Krasikov; Boris Shapiro Elements of Pólya-Schur theory in the finite difference setting, Proceedings of the American Mathematical Society, Volume 144 (2016) no. 11, pp. 4831-4843 | DOI:10.1090/proc/13115 | Zbl:1353.26012
  • Mayya Golitsyna Analytic closure of sets of real hyperbolic polynomials with separated roots, European Journal of Mathematics, Volume 1 (2015) no. 3, pp. 641-653 | DOI:10.1007/s40879-015-0047-3 | Zbl:1337.30006

Cité par 7 documents. Sources : zbMATH

Commentaires - Politique