[Multiplicateurs et mailles logarithmiques]
In this Note we prove a new result about (finite) multiplier sequences, i.e. linear operators acting diagonally in the standard monomial basis of
Les multiplicateurs considérés dans cette Note sont les opérateurs linéaires qui agissent diagonalement sur
Accepté le :
Publié le :
Olga Katkova 1 ; Boris Shapiro 2 ; Anna Vishnyakova 1
@article{CRMATH_2011__349_1-2_35_0, author = {Olga Katkova and Boris Shapiro and Anna Vishnyakova}, title = {Multiplier sequences and logarithmic mesh}, journal = {Comptes Rendus. Math\'ematique}, pages = {35--38}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.031}, language = {en}, }
Olga Katkova; Boris Shapiro; Anna Vishnyakova. Multiplier sequences and logarithmic mesh. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 35-38. doi : 10.1016/j.crma.2010.11.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.031/
[1] Pólya–Schur master theorems for circular domains and their boundaries, Ann. of Math. (2), Volume 170 (2009) no. 1, pp. 465-492
[2] Problems and theorems in the theory of multiplier sequences, Serdica Math. J., Volume 22 (1996), pp. 515-524
[3] Multiplier sequences for fields, Illinois J. Math., Volume 21 (1977) no. 4, pp. 801-817
[4] Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963
[5] Über zwei Arten von Faktorenfolgen in der Theorie der algebraische Gleichungen, J. Reine Angew. Math., Volume 144 (1914), pp. 89-113
[6] Sur un theoreme de M. Marcel Riesz, Nouv. Ann. Math., Volume 1 (1926), pp. 97-99
[7] Bemerkungen zu einem Satz von J.H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. (2), Volume 13 (1922), pp. 28-55
- Applications of multiple orthogonal polynomials with hypergeometric moment generating functions, Advances in Applied Mathematics, Volume 158 (2024), p. 45 (Id/No 102709) | DOI:10.1016/j.aam.2024.102709 | Zbl:1544.33012
- Hermite-Poulain theorems for linear finite difference operators, Constructive Approximation, Volume 52 (2020) no. 3, pp. 357-393 | DOI:10.1007/s00365-020-09507-0 | Zbl:1475.30024
- Linear finite difference operators preserving the Laguerre-Pólya class, Complex Variables and Elliptic Equations, Volume 63 (2018) no. 11, pp. 1604-1619 | DOI:10.1080/17476933.2017.1400539 | Zbl:1395.30007
- Suffridge's convolution theorem for polynomials and entire functions having only real zeros, Advances in Mathematics, Volume 288 (2016), pp. 426-463 | DOI:10.1016/j.aim.2015.10.016 | Zbl:1335.30004
- On the Pochhammer transformation and hyperbolic polynomials decomposed in the Pochhammer basis, Journal of Difference Equations and Applications, Volume 22 (2016) no. 12, pp. 1871-1879 | DOI:10.1080/10236198.2016.1248956 | Zbl:1361.30007
- Elements of Pólya-Schur theory in the finite difference setting, Proceedings of the American Mathematical Society, Volume 144 (2016) no. 11, pp. 4831-4843 | DOI:10.1090/proc/13115 | Zbl:1353.26012
- Analytic closure of sets of real hyperbolic polynomials with separated roots, European Journal of Mathematics, Volume 1 (2015) no. 3, pp. 641-653 | DOI:10.1007/s40879-015-0047-3 | Zbl:1337.30006
Cité par 7 documents. Sources : zbMATH
Commentaires - Politique