[Formule de Clark–Ocone generalisée pour des non-semimartingales à variation quadratique finie]
Nous présentons un cadre adéquat pour le concept de variation quadratique finie lorsque le processus de référence est à valeurs dans un espace de Banach séparable B. Le langage utilisé est celui de l'intégrale via régularisations introduit dans le cas réel par le second auteur et P. Vallois. À un processus réel continu X, nous associons le processus
We provide a suitable framework for the concept of finite quadratic variation for processes with values in a separable Banach space B using the language of stochastic calculus via regularizations, introduced in the case
Accepté le :
Publié le :
Cristina Di Girolami 1, 2 ; Francesco Russo 2, 3
@article{CRMATH_2011__349_3-4_209_0, author = {Cristina Di Girolami and Francesco Russo}, title = {Clark{\textendash}Ocone type formula for non-semimartingales with finite quadratic variation}, journal = {Comptes Rendus. Math\'ematique}, pages = {209--214}, publisher = {Elsevier}, volume = {349}, number = {3-4}, year = {2011}, doi = {10.1016/j.crma.2010.11.032}, language = {en}, }
TY - JOUR AU - Cristina Di Girolami AU - Francesco Russo TI - Clark–Ocone type formula for non-semimartingales with finite quadratic variation JO - Comptes Rendus. Mathématique PY - 2011 SP - 209 EP - 214 VL - 349 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2010.11.032 LA - en ID - CRMATH_2011__349_3-4_209_0 ER -
Cristina Di Girolami; Francesco Russo. Clark–Ocone type formula for non-semimartingales with finite quadratic variation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 209-214. doi : 10.1016/j.crma.2010.11.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.032/
[1] Nonsemimartingales: Stochastic differential equations and weak Dirichlet processes, Ann. Probab., Volume 35 (2007) no. 1, pp. 255-308
[2] Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992
[3] C. Di Girolami, F. Russo, Infinite dimensional stochastic calculus via regularization and applications, HAL-INRIA, preprint, 2010, http://hal.archives-ouvertes.fr/inria-00473947/fr/.
[4] Vector Integration and Stochastic Integration in Banach Spaces, Pure and Applied Mathematics (New York), Wiley–Interscience, New York, 2000
[5] n-Covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes, Stochastic Process. Appl., Volume 104 (2003) no. 2, pp. 259-299
[6] Stochastic Integration, Probability and Mathematical Statistics, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980
[7] Elements of stochastic calculus via regularization, Séminaire de Probabilités XL, Lecture Notes in Math., vol. 1899, Springer, Berlin, 2007, pp. 147-185
[8] Robust option replication for a Black–Scholes model extended with nondeterministic trends, J. Appl. Math. Stochastic Anal., Volume 12 (1999) no. 2, pp. 113-120
- Notion of quadratic variation in Banach spaces, Stochastic Analysis and Applications, Volume 42 (2024) no. 4, pp. 674-701 | DOI:10.1080/07362994.2024.2369834 | Zbl:7942918
- Crandall-Lions viscosity solutions for path-dependent PDEs: the case of heat equation, Bernoulli, Volume 28 (2022) no. 1, pp. 481-503 | DOI:10.3150/21-bej1353 | Zbl:1482.35072
- Elements of Wiener Analysis, Stochastic Calculus via Regularizations, Volume 11 (2022), p. 333 | DOI:10.1007/978-3-031-09446-0_10
- About classical solutions of the path-dependent heat equation, Random Operators and Stochastic Equations, Volume 28 (2020) no. 1, pp. 35-62 | DOI:10.1515/rose-2020-2028 | Zbl:1457.60106
- Path dependent equations driven by Hölder processes, Stochastic Analysis and Applications, Volume 37 (2019) no. 3, pp. 480-498 | DOI:10.1080/07362994.2019.1585263 | Zbl:1432.60058
- Infinite dimensional weak Dirichlet processes and convolution type processes, Stochastic Processes and their Applications, Volume 127 (2017) no. 1, pp. 325-357 | DOI:10.1016/j.spa.2016.06.010 | Zbl:1353.60062
- Functional Itô versus Banach space stochastic calculus and strict solutions of semilinear path-dependent equations, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Volume 19 (2016) no. 4, p. 44 (Id/No 1650024) | DOI:10.1142/s0219025716500247 | Zbl:1356.60085
- Calculus via regularizations in Banach spaces and Kolmogorov-type path-dependent equations, Probability on algebraic and geometric structures. International research conference in honor of Philip Feinsilver, Salah-Eldin A. Mohammed, and Arunava Mukherjea, Southern Illinois University, Carbondale, IL, USA, June 5–7, 2014, Providence, RI: American Mathematical Society (AMS), 2016, pp. 43-65 | DOI:10.1090/conm/668/13396 | Zbl:1415.60056
- Functional and Banach space stochastic calculi: path-dependent Kolmogorov equations associated with the frame of a Brownian motion, Stochastics of environmental and financial economics. Centre of Advanced Study, Oslo, Norway, 2014–2015, Cham: Springer, 2016, pp. 27-80 | DOI:10.1007/978-3-319-23425-0_2 | Zbl:1338.60138
- The covariation for Banach space valued processes and applications, Metrika, Volume 77 (2014) no. 1, pp. 51-104 | DOI:10.1007/s00184-013-0472-6 | Zbl:1455.60073
- Generalized covariation for Banach space valued processes, Itō formula and applications, Osaka Journal of Mathematics, Volume 51 (2014) no. 3, pp. 729-783 | Zbl:1308.60039
- Robust Hedging and Pathwise Calculus, Applied Mathematical Finance, Volume 20 (2013) no. 3, p. 287 | DOI:10.1080/1350486x.2012.725978
- Generalized covariation and extended Fukushima decomposition for Banach space-valued processes: applications to windows of Dirichlet processes, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Volume 15 (2012) no. 2, p. 1250007 | DOI:10.1142/s0219025712500075 | Zbl:1279.60067
- On stochastic calculus related to financial assets without semimartingales, Bulletin des Sciences Mathématiques, Volume 135 (2011) no. 6-7, pp. 733-774 | DOI:10.1016/j.bulsci.2011.06.008 | Zbl:1233.91337
Cité par 14 documents. Sources : Crossref, zbMATH
Commentaires - Politique