[Convergence of partial sum processes to Lévy processes for associated sequences]
In this Note we prove that, if for a suitably normalized version of the partial-sum process associated to a strictly stationary and associated sequence of real-valued random variables, the finite dimensional convergence to a Lévy stable motion holds, then the partial-sum process converges to this Lévy stable motion in the -topology of Skorohod.
Dans cette Note, nous montrons que pour les suites de variables aléatoires réelles, associées et strictement stationnaires, la convergence des marginales de dimensions finies du processus des sommes partielles convenablement normalisé vers celles d'un processus de Lévy stable implique sa convergence vers ce processus de Lévy stable, sous la -topologie de Skorohod.
Accepted:
Published online:
Sana Louhichi 1; Emmanuel Rio 2
@article{CRMATH_2011__349_1-2_89_0, author = {Sana Louhichi and Emmanuel Rio}, title = {Convergence du processus de sommes partielles vers un processus de {L\'evy} pour les suites associ\'ees}, journal = {Comptes Rendus. Math\'ematique}, pages = {89--91}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.12.001}, language = {fr}, }
TY - JOUR AU - Sana Louhichi AU - Emmanuel Rio TI - Convergence du processus de sommes partielles vers un processus de Lévy pour les suites associées JO - Comptes Rendus. Mathématique PY - 2011 SP - 89 EP - 91 VL - 349 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2010.12.001 LA - fr ID - CRMATH_2011__349_1-2_89_0 ER -
Sana Louhichi; Emmanuel Rio. Convergence du processus de sommes partielles vers un processus de Lévy pour les suites associées. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 89-91. doi : 10.1016/j.crma.2010.12.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.12.001/
[1] Weak convergence of sums of moving averages in the α-stable domain of attraction, Annals of Probability, Volume 20 (1992), pp. 483-503
[2] An invariance principle for certain dependent sequences, Annals of Probability, Volume 9 (1981), pp. 671-675
[3] Associated random variables and martingale inequalities, Z. Wahrscheinlichkeitstheorie verw. Gebiete, Volume 59 (1982), pp. 361-371
[4] Limit theorems for stochastic processes, Theory Probab. Appl., Volume 1 (1956), pp. 261-290
[5] Weak convergence to Lévy stable processes in dynamical systems, Stochastics and Dynamics, Volume 10 (2010), pp. 263-269
[6] Stochastic-Process Limits, Springer Series in Operations Research, Springer-Verlag, New-York, 2002
Cited by Sources:
Comments - Policy