[Corps de nombres algébriques à degrés locaux bornés]
It is well known that if a field
Il est bien connu que si un corps
Accepté le :
Publié le :
Sara Checcoli 1 ; Umberto Zannier 2
@article{CRMATH_2011__349_1-2_11_0, author = {Sara Checcoli and Umberto Zannier}, title = {On fields of algebraic numbers with bounded local degrees}, journal = {Comptes Rendus. Math\'ematique}, pages = {11--14}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.12.007}, language = {en}, }
Sara Checcoli; Umberto Zannier. On fields of algebraic numbers with bounded local degrees. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 11-14. doi : 10.1016/j.crma.2010.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.12.007/
[1] A note on heights in certain infinite extensions of
[2] Finite Solvable Groups, De Gruyter, Berlin/New York, 1992
[3] Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, Berlin, 1990
[4] Cohomology of Number Fields, Grundl. Math. Wiss., vol. 323, Springer, 1999
[5] Une « formule de masse » pour les extensions totalement ramifiées de degré donné d'un corps local, C. R. Acad. Sci. Paris, Volume 286 (1978), pp. 1031-1036
[6] On p-extensions, AMS. Transl., Ser. 2, Volume 4 (1956), pp. 59-72
Cité par Sources :
Commentaires - Politique