A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbour in D, and the set is independent. The total outer-independent domination number of a graph G, denoted by , is the minimum cardinality of the total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have , and we characterize the trees attaining this lower bound.
Un sous-ensemble totalement dominant et extérieurement indépendant d'un graphe est un sous-ensemble D des sommets de G tel que chaque sommet de G ait un voisin dans D et l'ensemble soit indépendant. Le plus petit cardinal d'un tel sous-ensemble est noté . Nous démontrons que pour tout arbre T non trivial, d'ordre n avec l feuilles, nous avons . De plus, nous caractérisons les arbres réalisant cette borne inférieure.
Accepted:
Published online:
Marcin Krzywkowski 1
@article{CRMATH_2011__349_1-2_7_0, author = {Marcin Krzywkowski}, title = {A lower bound on the total outer-independent domination number of a tree}, journal = {Comptes Rendus. Math\'ematique}, pages = {7--9}, publisher = {Elsevier}, volume = {349}, number = {1-2}, year = {2011}, doi = {10.1016/j.crma.2010.11.021}, language = {en}, }
Marcin Krzywkowski. A lower bound on the total outer-independent domination number of a tree. Comptes Rendus. Mathématique, Volume 349 (2011) no. 1-2, pp. 7-9. doi : 10.1016/j.crma.2010.11.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.021/
[1] A note on the total domination number of a tree, J. Combin. Math. Combin. Comput., Volume 58 (2006), pp. 189-193
[2] Total domination in graphs, Networks, Volume 10 (1980), pp. 211-219
[3] Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998
[4] Domination in Graphs: Advanced Topics (T. Haynes; S. Hedetniemi; P. Slater, eds.), Marcel Dekker, New York, 1998
[5] M. Krzywkowski, Total outer-independent domination in graphs, submitted for publication.
Cited by Sources:
Comments - Policy