Comptes Rendus
Partial Differential Equations/Calculus of Variations
A class of existence results for the singular Liouville equation
Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 161-166.

We consider a class of elliptic PDEs on closed surfaces with exponential nonlinearities and Dirac deltas on the right-hand side. The study arises from abelian Chern–Simons theory in self-dual regime, or from the problem of prescribing the Gaussian curvature in presence of conical singularities. A general existence result is proved using global variational methods: the analytic problem is reduced to a topological problem concerning the contractibility of a model space, the so-called space of formal barycenters, characterizing the very low sublevels of a suitable functional.

Nous considérons une classe d'EDP elliptiques sur une surface compacte et sans bord, avec une nonlinéarité exponentielle et des masses de Dirac dans le membre de droite. Ce travail est motivé par l'étude d'équations de Chern–Simons abéliennes en régime auto-dual, ainsi que par le problème de la courbure gaussienne prescrite pour des surfaces avec singularités coniques. Nous démontrons un résultat général d'existence en utilisant des méthodes variationnels globales : le problème analytique est réduit à un problème topologique concernant la contractilité d'un espace modèle, l'espace des barycentres formels, qui caractérise les sous-niveaux très bas d'une fonctionnelle appropriée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2010.12.016

Alessandro Carlotto 1; Andrea Malchiodi 2

1 Stanford University, Department of Mathematics, Stanford, CA 94305, USA
2 SISSA, Via Bonomea 265, 34136 Trieste, Italy
@article{CRMATH_2011__349_3-4_161_0,
     author = {Alessandro Carlotto and Andrea Malchiodi},
     title = {A class of existence results for the singular {Liouville} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {161--166},
     publisher = {Elsevier},
     volume = {349},
     number = {3-4},
     year = {2011},
     doi = {10.1016/j.crma.2010.12.016},
     language = {en},
}
TY  - JOUR
AU  - Alessandro Carlotto
AU  - Andrea Malchiodi
TI  - A class of existence results for the singular Liouville equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 161
EP  - 166
VL  - 349
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2010.12.016
LA  - en
ID  - CRMATH_2011__349_3-4_161_0
ER  - 
%0 Journal Article
%A Alessandro Carlotto
%A Andrea Malchiodi
%T A class of existence results for the singular Liouville equation
%J Comptes Rendus. Mathématique
%D 2011
%P 161-166
%V 349
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2010.12.016
%G en
%F CRMATH_2011__349_3-4_161_0
Alessandro Carlotto; Andrea Malchiodi. A class of existence results for the singular Liouville equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 3-4, pp. 161-166. doi : 10.1016/j.crma.2010.12.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.12.016/

[1] T. Aubin Some Nonlinear Problems in Riemannian Geometry, SMM, Springer-Verlag, Berlin, 1998

[2] A. Bahri; J.M. Coron On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., Volume 41 (1988), pp. 253-294

[3] D. Bartolucci; E. Montefusco Blow-up analysis, existence and qualitative properties of solutions of the two-dimensional Emden–Fowler equation with singular potential, Math. Meth. Appl. Sci., Volume 30 (2007), pp. 2309-2327

[4] D. Bartolucci; G. Tarantello Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Comm. Math. Phys., Volume 229 (2002), pp. 3-47

[5] H. Brezis; F. Merle Uniform estimates and blow-up behavior for solutions of Δu=V(x)eu in two dimensions, Commun. Partial Differ. Equations, Volume 16 (1991), pp. 1223-1253

[6] E. Caglioti; P.L. Lions; C. Marchioro; M. Pulvirenti A special class of stationary flows for two dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys., Volume 143 (1992), pp. 501-525

[7] E. Caglioti; P.L. Lions; C. Marchioro; M. Pulvirenti A special class of stationary flows for two dimensional Euler equations: A statistical mechanics description, part II, Comm. Math. Phys., Volume 174 (1995), pp. 229-260

[8] A. Carlotto, A. Malchiodi, Weighted barycentric sets and singular Liouville equations on compact surfaces, in preparation.

[9] C.C. Chen; C.S. Lin Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math., Volume 55 (2002), pp. 728-771

[10] C.C. Chen; C.S. Lin Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., Volume 56 (2003) no. 12, pp. 1667-1727

[11] C.C. Chen, C.S. Lin, A degree counting formula for singular Liouville-type equation and its application to multi vortices in electroweak theory, in preparation.

[12] W.X. Chen; C. Li Prescribing Gaussian curvature on surfaces with conical singularities, J. Geom. Anal., Volume 1 (1991) no. 4, pp. 359-372

[13] W. Ding; J. Jost; J. Li; G. Wang Existence results for mean field equations, Ann. Inst. Henri Poincaré, Volume 16 (1999), pp. 653-666

[14] Z. Djadli; A. Malchiodi Existence of conformal metrics with constant Q-curvature, Ann. Math., Volume 168 (2008), pp. 813-858

[15] G. Dunne Self-dual Chern–Simons Theories, Lecture Notes in Physics, Springer-Verlag, Berlin, 1995

[16] J. Kazdan; F. Warner Curvature functions for compact 2-manifolds, Ann. Math., Volume 99 (1974), pp. 14-47

[17] M.H.K. Kiessling Statistical mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math., Volume 46 (1993), pp. 27-56

[18] Selected Papers on Gauge Theory of Weak and Electromagnetic Interactions (C.H. Lai, ed.), World Scientific, Singapore, 1981

[19] J.M. Lee; T.H. Parker The Yamabe problem, Bull. Amer. Math. Soc., Volume 17 (1987), pp. 37-91

[20] Y.Y. Li Harnack type inequality: The method of moving planes, Comm. Math. Phys., Volume 200 (1999) no. 2, pp. 421-444

[21] Y.Y. Li; I. Shafrir Blow-up analysis for solutions of Δu=Veu in dimension two, Indiana Univ. Math. J., Volume 43 (1994), pp. 1255-1270

[22] A. Malchiodi Morse theory and a scalar field equation on compact surfaces, Adv. Diff. Eq., Volume 13 (2008) no. 11–12, pp. 1109-1129

[23] A. Malchiodi, D. Ruiz, New improved Moser–Trudinger inequalities and singular Liouville equations on compact surfaces, preprint, 2010.

[24] M. Struwe The existence of surfaces of constant mean curvature with free boundaries, Acta Math., Volume 160 (1988) no. 1–2, pp. 19-64

[25] G. Tarantello Self-Dual Gauge Field Vortices: An Analytical Approach, PNLDE, vol. 72, Birkhäuser Boston, Inc., Boston, MA, 2007

[26] M. Troyanov Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc., Volume 324 (1991) no. 2, pp. 793-821

Cited by Sources:

Comments - Policy