[On the Lehmann foliation]
We prove that Lehmannʼs foliation cannot be deformed into a non-nilpotent one.
On montre que le feuilletage de Lehmann nʼadmet pas de déformation non nilpotente.
Accepted:
Published online:
Hamidou Dathe 1
@article{CRMATH_2011__349_5-6_337_0, author = {Hamidou Dathe}, title = {Sur le feuilletage de {Lehmann}}, journal = {Comptes Rendus. Math\'ematique}, pages = {337--340}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.02.006}, language = {fr}, }
Hamidou Dathe. Sur le feuilletage de Lehmann. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 337-340. doi : 10.1016/j.crma.2011.02.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.006/
[1] Harish-Chandra arithmetic subgroups of algebraic groups, Annals of Mathematics, Volume 75 (1962)
[2] Exemples de feuilletages de Lie, Annales de la Faculté des Sciences de Toulouse, Ser. 6, Volume 15 (2006) no. 2, pp. 203-215
[3] Riemannian foliations: examples and problems, Progress in Mathematics, vol. 73, Birkhäuser, Boston, 1988 (Appendice E de Riemannian foliations, par P. Molino)
[4] On deformations of transversely homogenous foliations, Topology, Volume 40 (2001), pp. 1363-1393
[5] Sur lʼapproximation de certains feuilletages nilpotents par des fibrations, Comptes Rendus de lʼAcadémie de Sciences Serie A, Volume 286 (1978), pp. 251-254
[6] Curvatures of left invariants metrics on Lie groups, Advances in Mathematics, Volume 21 (1976), pp. 293-329
[7] Riemannian Foliations, Progress in Mathematics, vol. 73, Birkhäuser, Boston, 1988
[8] On fibering certain manifold over the circle, Topology, Volume 9 (1970), pp. 153-154
[9] A note on solvable Lie groups without lattices and the Felix–Thomas models of fibrations, 2000 | arXiv
Cited by Sources:
Comments - Policy