[Dynamique explosive de solutions régulières équivariantes de lʼapplication de Schrödinger énergie critique]
We consider the energy critical Schrödinger map
Nous considérons lʼapplication de Schrödinger sur la 2-sphère énergie critique
Accepté le :
Publié le :
Frank Merle 1 ; Pierre Raphaël 2 ; Igor Rodnianski 3
@article{CRMATH_2011__349_5-6_279_0, author = {Frank Merle and Pierre Rapha\"el and Igor Rodnianski}, title = {Blow up dynamics for smooth equivariant solutions to the energy critical {Schr\"odinger} map}, journal = {Comptes Rendus. Math\'ematique}, pages = {279--283}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.026}, language = {en}, }
TY - JOUR AU - Frank Merle AU - Pierre Raphaël AU - Igor Rodnianski TI - Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map JO - Comptes Rendus. Mathématique PY - 2011 SP - 279 EP - 283 VL - 349 IS - 5-6 PB - Elsevier DO - 10.1016/j.crma.2011.01.026 LA - en ID - CRMATH_2011__349_5-6_279_0 ER -
%0 Journal Article %A Frank Merle %A Pierre Raphaël %A Igor Rodnianski %T Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map %J Comptes Rendus. Mathématique %D 2011 %P 279-283 %V 349 %N 5-6 %I Elsevier %R 10.1016/j.crma.2011.01.026 %G en %F CRMATH_2011__349_5-6_279_0
Frank Merle; Pierre Raphaël; Igor Rodnianski. Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 279-283. doi : 10.1016/j.crma.2011.01.026. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.026/
[1] Near soliton evolution for equivariant Schrödinger maps in two spatial dimensions | arXiv
[2] I. Bejenaru, A. Ionescu, C. Kenig, D. Tataru, Global Schrödinger maps, Annals of Math., in press.
[3] Formal asymptotics of bubbling in the harmonic map heat flow, SIAM J. Appl. Math., Volume 63 (2003), pp. 1682-1717
[4] Schrödinger maps, Comm. Pure Appl. Math., Volume 53 (2000) no. 5
[5] Geometric evolution equations in critical dimensions, Calc. Var. Partial Differential Equations, Volume 30 (2007) no. 4, pp. 499-512
[6] Schrödinger flow near harmonic maps, Comm. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 463-499
[7] Asymptotic stability of harmonic maps under the Schrödinger flow, Duke Math. J., Volume 145 (2008) no. 3, pp. 537-583
[8] Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on
[9] Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math., Volume 171 (2008) no. 3, pp. 543-615
[10] Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal., Volume 13 (2003), pp. 591-642
[11] On universality of blow up profile for
[12] Profiles and quantization of the blow up mass for critical non linear Schrödinger equation, Comm. Math. Phys., Volume 253 (2004) no. 3, pp. 675-704
[13] Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Annals of Math., Volume 161 (2005) no. 1, pp. 157-222
[14] Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Amer. Math. Soc., Volume 19 (2006) no. 1, pp. 37-90
[15] F. Merle, P. Raphaël, I. Rodnianski, Blow up for the energy critical corotational Schrödinger map, preprint 2011.
[16] On singularities of the heat flow for harmonic maps from surfaces into spheres, Comm. Anal. Geom., Volume 3 (1995), pp. 297-315
[17] Bubbling of the heat flows for harmonic maps from surface, Comm. Pure Appl. Math., Volume 50 (1997), pp. 295-310
[18] Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation, Math. Ann., Volume 331 (2005), pp. 577-609
[19] P. Raphaël, I. Rodnianski, Stable blow up dynamics for the critical corotational Wave map and equivariant Yang–Mills problems, Publi. I.H.E.S., in press.
[20] Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., Volume 24 (2011), pp. 471-546
[21] On the evolution of harmonic mappings of Riemannian surfaces, Comm. Math. Helv., Volume 60 (1985), pp. 558-581
[22] Winding behaviour of finite-time singularities of the harmonic map heat flow, Math. Z., Volume 247 (2004)
- On the stability of blowup solutions for the critical corotational wave-map problem, Duke Mathematical Journal, Volume 169 (2020) no. 3, pp. 435-532 | DOI:10.1215/00127094-2019-0053 | Zbl:1441.35071
- On the stability of type II blowup for the 1-corotational energy-supercritical harmonic heat flow, Analysis PDE, Volume 12 (2019) no. 1, pp. 113-187 | DOI:10.2140/apde.2019.12.113 | Zbl:1397.35129
- Finite-time singularity of the stochastic harmonic map flow, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 55 (2019) no. 2, pp. 1011-1041 | DOI:10.1214/18-aihp907 | Zbl:1427.60124
- Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, Transactions of the American Mathematical Society, Volume 371 (2019) no. 8, pp. 5899-5972 | DOI:10.1090/tran/7631 | Zbl:1423.35186
- Construction and stability of blowup solutions for a non-variational semilinear parabolic system, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 35 (2018) no. 6, pp. 1577-1630 | DOI:10.1016/j.anihpc.2018.01.003 | Zbl:1394.35222
- The Cauchy problem for a spin-liquid model in three space dimensions, Applicable Analysis, Volume 97 (2018) no. 10, pp. 1771-1796 | DOI:10.1080/00036811.2017.1341973 | Zbl:1394.35468
- Struwe-like solutions for the stochastic harmonic map flow, Journal of Evolution Equations, Volume 18 (2018) no. 3, pp. 1189-1228 | DOI:10.1007/s00028-018-0437-3 | Zbl:1434.60157
- Finite degrees of freedom for the refined blow-up profile of the semilinear heat equation, Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, Volume 50 (2017) no. 5, pp. 1241-1282 | DOI:10.24033/asens.2644 | Zbl:1395.35125
- Construction of a stable periodic solution to a semilinear heat equation with a prescribed profile, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 131 (2016), pp. 300-324 | DOI:10.1016/j.na.2015.09.002 | Zbl:1334.35145
- Renormalization and blow-up for wave maps from
to , Transactions of the American Mathematical Society, Volume 368 (2016) no. 8, pp. 5621-5654 | DOI:10.1090/tran/6524 | Zbl:1339.35063 - Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation, Communications in Partial Differential Equations, Volume 40 (2015) no. 7, pp. 1197-1217 | DOI:10.1080/03605302.2015.1018997 | Zbl:1335.35126
- A regularity criterion for the Schrödinger map, Current trends in analysis and its applications. Proceedings of the 9th ISAAC congress, Kraków, Poland, August 5–9, 2013, Cham: Birkhäuser/Springer, 2015, pp. 217-223 | DOI:10.1007/978-3-319-12577-0_26 | Zbl:1327.35290
- Quantized slow blow-up dynamics for the corotational energy-critical harmonic heat flow, Analysis PDE, Volume 7 (2014) no. 8, p. 1713 | DOI:10.2140/apde.2014.7.1713
- An unconstrained Lagrangian formulation and conservation laws for the Schrödinger map system, Journal of Mathematical Physics, Volume 55 (2014) no. 5, p. 051502 | DOI:10.1063/1.4874106 | Zbl:1348.58021
- On the stability of critical chemotactic aggregation, Mathematische Annalen, Volume 359 (2014) no. 1-2, pp. 267-377 | DOI:10.1007/s00208-013-1002-6 | Zbl:1320.35100
- Conditional global regularity of Schrödinger maps: Subthreshold dispersed energy, Analysis PDE, Volume 6 (2013) no. 3, p. 601 | DOI:10.2140/apde.2013.6.601
- Blowup rate of isotropic anti-ferromagnetic equation near the equivariant data, Communications in Nonlinear Science and Numerical Simulation, Volume 18 (2013) no. 8, p. 2222 | DOI:10.1016/j.cnsns.2012.12.013
- Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow, Communications on Pure and Applied Mathematics, Volume 66 (2013) no. 3, pp. 414-480 | DOI:10.1002/cpa.21435 | Zbl:1270.35136
- Equivariant Schrödinger maps in two spatial dimensions, Duke Mathematical Journal, Volume 162 (2013) no. 11 | DOI:10.1215/00127094-2293611
- (In-)stability of singular equivariant solutions to the Landau-Lifshitz-Gilbert equation, European Journal of Applied Mathematics, Volume 24 (2013) no. 6, pp. 921-948 | DOI:10.1017/s0956792513000247 | Zbl:1293.35059
- Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data, Journal of Functional Analysis, Volume 265 (2013) no. 12, pp. 3009-3052 | DOI:10.1016/j.jfa.2013.08.009 | Zbl:1348.35248
- Geometric solitons of Hamiltonian flows on manifolds, Journal of Mathematical Physics, Volume 54 (2013) no. 12, p. 121505 | DOI:10.1063/1.4848775 | Zbl:1337.37056
- Blow up and near soliton dynamics for the
critical gKdV equation, Séminaire Laurent Schwartz. EDP et Applications, Volume 2011-2012 (2013), p. ex | DOI:10.5802/slsedp.28 | Zbl:1319.35224 - Regularity criteria for hyperbolic Navier-Stokes and related system, ISRN Mathematical Analysis, Volume 2012 (2012), p. 7 (Id/No 796368) | DOI:10.5402/2012/796368 | Zbl:1254.35042
- Type II blow-up for the four dimensional energy critical semi linear heat equation, Journal of Functional Analysis, Volume 263 (2012) no. 12, p. 3922 | DOI:10.1016/j.jfa.2012.09.015
Cité par 25 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier