Comptes Rendus
Partial Differential Equations/Functional Analysis
On Hardy inequalities with singularities on the boundary
[Sur les inégalités de Hardy avec des singularités sur la frontière]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 273-277.

In this Note we present some Hardy–Poincaré inequalities with one singularity localized on the boundary of a smooth domain. Then, we consider conical domains in dimension N3 whose vertex is on the singularity and we show upper and lower bounds for the corresponding optimal constants in the Hardy inequality. In particular, we prove the asymptotic behavior of the optimal constant when the amplitude of the cone tends to zero.

Dans ce travail nous présentons quelques inégalités de Hardy–Poincaré avec une singularité localisée sur la frontière dʼun domaine régulier. Ensuite, nous considérons des domaines coniques en dimension N3 dont le sommet est sur la singularité et nous établissons des bornes supérieure et inférieure pour les constantes optimales correspondantes dans lʼinégalité de Hardy. En particulier, nous montrons le comportement asymptotique de la constante optimale lorsque lʼamplitude du cône tend vers zéro.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.02.005

Cristian Cazacu 1, 2

1 BCAM – Basque Center for Applied Mathematics, Bizkaia Technology Park 500, 48160 Derio, Basque Country, Spain
2 Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
@article{CRMATH_2011__349_5-6_273_0,
     author = {Cristian Cazacu},
     title = {On {Hardy} inequalities with singularities on the boundary},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {273--277},
     publisher = {Elsevier},
     volume = {349},
     number = {5-6},
     year = {2011},
     doi = {10.1016/j.crma.2011.02.005},
     language = {en},
}
TY  - JOUR
AU  - Cristian Cazacu
TI  - On Hardy inequalities with singularities on the boundary
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 273
EP  - 277
VL  - 349
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crma.2011.02.005
LA  - en
ID  - CRMATH_2011__349_5-6_273_0
ER  - 
%0 Journal Article
%A Cristian Cazacu
%T On Hardy inequalities with singularities on the boundary
%J Comptes Rendus. Mathématique
%D 2011
%P 273-277
%V 349
%N 5-6
%I Elsevier
%R 10.1016/j.crma.2011.02.005
%G en
%F CRMATH_2011__349_5-6_273_0
Cristian Cazacu. On Hardy inequalities with singularities on the boundary. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 273-277. doi : 10.1016/j.crma.2011.02.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.005/

[1] N.C. Adimurthi; M. Ramaswamy An improved Hardy–Sobolev inequality and its application, Proc. Amer. Math. Soc., Volume 130 (2002) no. 2, pp. 489-505 (electronic)

[2] F. Bowman Introduction to Bessel Functions, Dover Publications Inc., New York, 1958

[3] H. Brezis; J.L. Vázquez Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, Volume 10 (1997) no. 2, pp. 443-469

[4] P. Caldiroli; R. Musina Stationary states for a two-dimensional singular Schrödinger equation, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Volume 4 (2001) no. 3, pp. 609-633

[5] G.A. Cámera Some inequalities for the first eigenvalue of the Laplace–Beltrami operator, Mathematical Notes, vol. 100, Univ. de Los Andes, Mérida, 1989, pp. 67-82 (in Spanish)

[6] C. Cazacu Hardy inequalities with boundary singularities | arXiv

[7] C. Cazacu, E. Zuazua, Hardy inequalities and controllability of the wave equation with boundary singular quadratic potential, in: Proceedings Picof10, 2010, pp. 149–155.

[8] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Berlin, 1987.

[9] S. Filippas; A. Tertikas; J. Tidblom On the structure of Hardy–Sobolev–Mazʼya inequalities, J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 6, pp. 1165-1185

[10] G.H. Hardy An inequality between integrals, Messenger of Math., Volume 54 (1925), pp. 150-156

[11] G.H. Hardy; J.E. Littlewood; G. Pólya Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988 (reprint of the 1952 edition)

[12] M.F. Mouhamed On the Hardy–Poincaré inequality with boundary singularities | arXiv

[13] M.F. Mouhamed; R. Musina Hardy–Poincaré inequalities with boundary singularities | arXiv

[14] M.F. Mouhamed; R. Musina Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials | arXiv

[15] E.M. Stein; R. Shakarchi Fourier Analysis, Princeton Lectures in Analysis, vol. 1, Princeton University Press, 2003

[16] J.L. Vázquez; E. Zuazua The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., Volume 173 (2000) no. 1, pp. 103-153

  • Cong Wang; Jiabao Su On the double weighted critical quasilinear Hénon problems, NoDEA. Nonlinear Differential Equations and Applications, Volume 32 (2025) no. 2, p. 23 (Id/No 19) | DOI:10.1007/s00030-025-01028-8 | Zbl:7995962
  • Ying Wang; Songqin Ye; Chunlan Li; Hongxing Chen Nonexistence for Lane-Emden system involving Hardy potentials with singularities on the boundary, Indian Journal of Pure and Applied Mathematics (2024) | DOI:10.1007/s13226-024-00667-4
  • Shubham Gupta Hardy inequalities for antisymmetric functions, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 248 (2024), p. 13 (Id/No 113619) | DOI:10.1016/j.na.2024.113619 | Zbl:7919110
  • Miltiadis Paschalis Shape sensitivity of the Hardy constant involving the distance from a boundary submanifold, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, Volume 154 (2024) no. 2, pp. 408-423 | DOI:10.1017/prm.2023.15 | Zbl:7817021
  • Luigi Montoro; Berardino Sciunzi Qualitative properties of solutions to the Dirichlet problem for a Laplace equation involving the Hardy potential with possibly boundary singularity, Mathematics in Engineering, Volume 5 (2023) no. 1, p. 16 (Id/No 17) | DOI:10.3934/mine.2023017 | Zbl:1539.35110
  • Nguyen Anh Dao; Anh Xuan Do; Duy Nguyen Tuan; Nguyen Lam Hardy type identities on \mathbb{R}^{n-k} {{\times}} ({{\mathbb}}{R}_+)^k via factorizations, Vietnam Journal of Mathematics, Volume 51 (2023) no. 2, pp. 329-343 | DOI:10.1007/s10013-021-00536-1 | Zbl:1547.26016
  • Cung The Anh; Vu Manh Toi; Tran Quoc Tuan Lipschitz stability in inverse source problems for a singular parabolic equation, Applicable Analysis, Volume 101 (2022) no. 8, pp. 2805-2824 | DOI:10.1080/00036811.2020.1823374 | Zbl:1494.35103
  • Huyuan Chen; Laurent Véron Boundary singularities of semilinear elliptic equations with Leray-Hardy potential, Communications in Contemporary Mathematics, Volume 24 (2022) no. 7, p. 37 (Id/No 2150051) | DOI:10.1142/s0219199721500516 | Zbl:1501.35191
  • Nguyen Tuan Duy; Nguyen Lam; Le Long Phi Some Hardy identities on half-spaces, Mathematische Nachrichten, Volume 294 (2021) no. 12, pp. 2317-2328 | DOI:10.1002/mana.201900312 | Zbl:1529.26015
  • Huyuan Chen; Laurent Véron Schrödinger operators with Leray-Hardy potential singular on the boundary, Journal of Differential Equations, Volume 269 (2020) no. 3, pp. 2091-2131 | DOI:10.1016/j.jde.2020.01.029 | Zbl:1440.35052
  • Nguyen Lam; Guozhen Lu; Lu Zhang Geometric Hardy's inequalities with general distance functions, Journal of Functional Analysis, Volume 279 (2020) no. 8, p. 34 (Id/No 108673) | DOI:10.1016/j.jfa.2020.108673 | Zbl:1473.35014
  • Tiziana Durante; Olha P. Kupenko; Rosanna Manzo On optimal boundary control problem for a strongly degenerate elliptic equation, Revista Matemática Complutense, Volume 33 (2020) no. 1, pp. 63-88 | DOI:10.1007/s13163-019-00310-5 | Zbl:1436.35186
  • Nguyen Lam; Guozhen Lu; Lu Zhang Factorizations and Hardy's type identities and inequalities on upper half spaces, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 6, p. 31 (Id/No 183) | DOI:10.1007/s00526-019-1633-x | Zbl:1435.26015
  • G. Barbatis; S. Filippas; A. Tertikas Sharp Hardy and Hardy-Sobolev inequalities with point singularities on the boundary, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 117 (2018), pp. 146-184 | DOI:10.1016/j.matpur.2018.05.004 | Zbl:1395.35004
  • Cristian Cazacu New estimates for the Hardy constants of multipolar Schrödinger operators, Communications in Contemporary Mathematics, Volume 18 (2016) no. 05, p. 1550093 | DOI:10.1142/s0219199715500935
  • Konstantinos Tzirakis Improving interpolated Hardy and trace Hardy inequalities on bounded domains, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 127 (2015), pp. 17-34 | DOI:10.1016/j.na.2015.06.019 | Zbl:1325.26053
  • Mouhamed Moustapha Fall; Fethi Mahmoudi Weighted Hardy inequality with higher dimensional singularity on the boundary, Calculus of Variations and Partial Differential Equations, Volume 50 (2014) no. 3-4, pp. 779-798 | DOI:10.1007/s00526-013-0655-z | Zbl:1296.35038
  • Cristian Cazacu Controllability of the Heat Equation with an Inverse-Square Potential Localized on the Boundary, SIAM Journal on Control and Optimization, Volume 52 (2014) no. 4, p. 2055 | DOI:10.1137/120862557
  • Adimurthi Best constants and Pohozaev identity for Hardy-Sobolev-type operators, Communications in Contemporary Mathematics, Volume 15 (2013) no. 3, p. 23 (Id/No 1250050) | DOI:10.1142/s0219199712500502 | Zbl:1285.35088
  • Heng-Xing Liu; Jing-Wen Luan Hardy-type inequalities on a half-space in the Heisenberg group, Journal of Inequalities and Applications, Volume 2013 (2013), p. 7 (Id/No 291) | DOI:10.1186/1029-242x-2013-291 | Zbl:1282.26026
  • Cristian Cazacu; Enrique Zuazua Improved multipolar Hardy inequalities, Studies in phase space analysis with applications to PDEs. In part selected papers based on the presentations at a meeting, Bertinoro, Italy, September 2011, New York, NY: Birkhäuser/Springer, 2013, pp. 35-52 | DOI:10.1007/978-1-4614-6348-1_3 | Zbl:1283.35098
  • Cristian Cazacu Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results, Journal of Functional Analysis, Volume 263 (2012) no. 12, pp. 3741-3783 | DOI:10.1016/j.jfa.2012.09.006 | Zbl:1393.35020
  • Dan Su; Qiao-Hua Yang On the best constants of Hardy inequality in Rnk×(R+)k and related improvements, Journal of Mathematical Analysis and Applications, Volume 389 (2012) no. 1, pp. 48-53 | DOI:10.1016/j.jmaa.2011.11.033 | Zbl:1237.26015
  • Cristian Cazacu Hardy inequality and Pohozaev identity for operators with boundary singularities: some applications, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 349 (2011) no. 21-22, pp. 1167-1172 | DOI:10.1016/j.crma.2011.10.009 | Zbl:1233.35004

Cité par 24 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: